Ek- 1: Gübrelerin Denetimi için Numune Alma Metodu GÜBRELERİN DENETİMİ İÇİN NUMUNE ALMA METODU
Analiz edilecek numunenin doğru olarak alınması oldukça önemli bir husus olup, büyük bir dikkat gerektirir. Gübrelerin denetim analizi için yeterince temsili numune alma işlemi, bu nedenle, aceleye getirilmemelidir.
Aşağıda belirtilen numune hazırlama metodu, geleneksel numune hazırlama işlemini çok iyi bilen kimyevi gübre denetçisi belgesine sahip kişilerce uygulanmalıdır.
1. AMAÇ VE KAPSAM
Kalite ve bileşimlerini belirlemek üzere gübrelere uygulanacak olan resmi kontroller için numuneler aşağıda belirtilen metoda göre alınacaklardır. Bu şekilde hazırlanan numunelerin, numune alınan partiyi temsil ettiği kabul edilir.
2. NUMUNE ALACAK GÖREVLİLER
Numuneler kimyevi gübre denetçisi belgesine sahip kişiler tarafından alınır.
3. TANIMLAR
Numune alınan parti: Bir ünite oluşturan ve aynı özelliklere sahip olduğu kabul edilen ürün miktarı Noktasal numune: Numune alınan partinin bir noktasından alınan numune Paçal numune: Aynı partiden alınan noktasal numunelerin karışımı Azaltılmış numune: Azaltma işlemiyle paçal numuneden elde edilen numunenin temsili bir kısmı Son numune: Paçal numuneden azaltılarak elde edilen nihai numune
4. ALETLER
5. PARTİ BÜYÜKLÜĞÜNE GÖRE ALINACAK NUMUNE MİKTARI
6. NUMUNELERİN ALINMASI, HAZIRLANMASI VE AMBALAJLANMASI İLE İLGİLİ KURALLAR
Ek-2: GÜBRELERİN ANALİZİ İÇİN ÖNGÖRÜLEN METOTLAR
GÜBRELERİN ANALİZİ İÇİN ÖNGÖRÜLEN METOTLAR
GENEL GÖZLEMLER Laboratuvar ile ilgili donanım
Çalışma sırasında kullanılan erlen ve pipetlerin boyutları belirtilmesine karşılık diğer laboratuvar donanımı ve kullanılan aletler kesin olarak tanımlanmamıştır. Çalışmalara başlamadan özellikle küçük miktarlarda yapılacak belirlemeler ve tanımlamalar nedeniyle, tüm laboratuvar cihaz ve aletler temizlenmiş olmalıdır. Kontrol testleri Tüm cihaz ve aletlerin normal çalıştıklarından emin olduktan sonra bileşimleri önceden bilinen uygun kimyasal bileşikleri (örneğin amonyum sülfat, mono potasyum fosfat gibi) kullanılmak suretiyle, analiz metodunun doğru olarak uygulandığından emin olunmalıdır. Bununla beraber, eğer tanımlanan analiz metodu tekniği tam anlamıyla doğru olarak uygulanmaz ise bazen, analiz edilen gübrelerden alınan sonuçlar yanlış kimyasal bileşimi gösterebilirler ve dolayısıyla yanlış sonuçlar alınmasına neden olabilirler. Diğer taraftan bazı belirleme reaksiyonları ampirik (salt deneysel) niteliklidir ve analiz edilen ürünün komplike kimyasal bileşimi ile yakından bağlantılıdırlar. Onun için mümkün olan durumlarda laboratuvarların standart gübre referansı için gerekli tanımlamaları yapmaları önerilir.
METOT 1 ANALİZ İÇİN NUMUNENİN HAZIRLANMASI EN 1482-2: Gübreler ve Kireçleme Malzemeleri -Numune Alma ve Numune Hazırlama-Kısım 2:Numune Hazırlama METOT 2 AZOT METOT 2.1 AMONYAK AZOTU TAYİNİ EN 15475: Gübreler: Amonyak Azotu Tayini Bu metot ring-test’e tabii tutulmuştur.
METOT 2.2 NİTRAT VE AMONYAK AZOTU TAYİNİ METOT 2.2.1 ULSCH’A GÖRE NİTRAT VE AMONYAK AZOTU TAYİNİ EN 15558: Gübreler: ULSCH’ye Göre Nitrat ve Amonyak Azotu Tayini Bu metot ring-test’e tabii tutulmamıştır. METOT 2.2.2 ARND’A GÖRE NİTRAT VE AMONYAK AZOTU TAYİNİ EN 15559: Gübreler: ARND’a Göre Nitrat ve Amonyak Azotu Tayini Bu metot ring-test’e tabii tutulmamıştır.
METOT 2.2.3 DEVARDA’YA GÖRE NİTRAT VE AMONYAK AZOTU TAYİNİ EN 15476: Gübreler: DEVARDA’ya Göre Nitrat ve Amonyak Azotu Tayini Bu metot ring-test’e tabii tutulmuştur.
METOT 2.3 TOPLAM AZOT MİKTARININ TAYİNİ METOT 2.3.1 NİTRAT İÇERMEYEN KALSİYUM SİYANAMİD’DE TOPLAM AZOT TAYİNİ EN 15560: Gübreler: Nitrat İçermeyen Kalsiyum Siyanamid’de Toplam Azot Tayini” Bu metot ring-test’e tabii tutulmamıştır.
METOT 2.3.2 NİTRAT İÇEREN KALSİYUM SİYANAMİD’DE TOPLAM AZOT TAYİNİ EN 15561: Gübreler: Nitrat İçeren Kalsiyum Siyanamid’de Toplam Azot Tayini” Bu metot ring-test’e tabii tutulmamıştır. METOT 2.3.3 ÜRE’DE TOPLAM AZOT TAYİNİ EN 15478: Gübreler: Üre’de Toplam Azot Tayini” Bu metot ring-test’e tabii tutulmamıştır. METOT 2.4 SİYANAMİD AZOTU TAYİNİ EN 15562: Gübreler: Siyanamid Azotu Tayini Bu metot ring-test’e tabii tutulmamıştır.
METOT 2.5 ÜRE’DE BİÜRENİN SPEKTROFOTOMETRİK TAYİNİ EN 15479: Gübreler: Üre’de Biürenin Spektrofotometrik Tayini Bu metot ring-test’e tabii tutulmuştur. METOT 2.6 AYNI NUMUNEDE AZOTUN FARKLI FORMLARININ TAYİNİ METOT 2.6.1 NİTRAT, AMONYAK, ÜRE VE SİYANAMİD AZOTU GİBİ FARKLI AZOT FORMLARI İÇEREN GÜBRELERDE AYNI NUMUNEDE AZOTUN FARKLI FORMLARININ TAYİNİ
EN 15604: Gübreler: Nitrat, Amonyak, Üre ve Siyanamid Azotu Gibi Farklı Azot Formları İçeren Gübrelerde Aynı Numunede Azotun Farklı Formlarının Tayini Bu metot ring-test’e tabii tutulmamıştır. METOT 2.6.2 İKİ FARKLI YÖNTEMLE SADECE NİTRAT, AMONYAK VE ÜRE AZOTU İÇEREN GÜBRELERDE TOPLAM AZOT TAYİNİ EN 15750: Gübreler: Nitrat İçermeyen Kalsiyum Siyanamid’de Toplam Azot Tayini Bu metot ring-test’e tabii tutulmuştur. METOT 2.6.3 HPLC KULLANILARAK ÜRE YOĞUNLAŞMASININ TAYİNİ – İSOBUTİLİDEN DİÜRE VE KROTONİLİDEN DİÜRE( METOT A) VE METİLEN ÜRE OLİGOMERLERİ (METOT B) EN 15705: Gübreler. Yüksek performanslı sıvı kromatografi (HPLC) kullanılarak üre yoğunlaşmasının tayini – İsobutiliden diüre ve krotoniliden diüre (Metot A) ve metilen üre obligomerleri ( Metot B) Bu metot ring-test’e tabii tutulmuştur. METOT 3 FOSFOR METOT 3.1 EKSTRAKSİYONLAR
METOT 3.1.1 MİNERAL ASİTLERDE ÇÖZÜNEN FOSFORUN EKSTRAKSİYONU EN 15956: Mineral Asitlerde Çözünen Fosforun Ekstraksiyonu Bu metot ring-test’e tabii tutulmuştur. METOT 3.1.2 % 2’LİK FORMİK ASİT DE ÇÖZÜNEN FOSFORUN EKSTRAKSİYONU EN 15919: % 2’lik Formik Asit de Çözünen Fosforun Ekstraksiyonu Bu metot ring-test’e tabii tutulmamıştır. METOT 3.1.3 % 2’LİK SİTRİK ASİT DE ÇÖZÜNEN FOSFORUN EKSTRAKSİYONU EN 15920: % 2’lik Sitrik Asit de Çözünen Fosforun Ekstraksiyonu Bu metot ring-test’e tabii tutulmamıştır. METOT 3.1.4 NÖTRAL AMOMYUM SİTRATTA ÇÖZÜNEN FOSFORUN EKSTRAKSİYONU EN 15957: Nötral Amomyum Sitratta Çözünen Fosforun Ekstraksiyonu Bu metot ring-test’e tabii tutulmuştur. METOT 3.1.5 ALKALİ AMONYUM SİTRAT İLE EKSTRAKSİYON METOT 3.1.5.1 PETERMANN’A GÖRE 65 OC SICAKLIKTA ÇÖZÜNÜR FOSFORUN EKTRAKSİYONU
EN 15921: Petermann’a Göre 65 OC Sıcaklıkta Çözünür Fosforun Ektraksiyonu Bu metot ring-test’e tabii tutulmuştur. METOT 3.1.5.2 PETERMANN’A GÖRE ODA SICAKLIKTA ÇÖZÜNÜR FOSFORUN EKTRAKSİYONU EN 15922: Petermann’a Göre Oda Sıcaklığında Çözünür Fosforun Ektraksiyonu” Bu metot ring-test’e tabii tutulmamıştır. METOT 3.1.5.3 JOULİE’NİN ALKALİ AMONYUM SİTRATINDA ÇÖZÜNÜR FOSFORUN EKSTRAKSİYONU EN 15923: Joulie’nin Alkali Amonyum Sitratında Çözünür Fosforun Ekstraksiyonu Bu metot ring-test’e tabii tutulmamıştır.
METOT 3.1.6 SUDA ÇÖZÜNÜR FOSFORUN EKSTRAKSİYONU EN 15958: Suda Çözünür Fosforun Ekstraksiyonu Bu metot ring-test’e tabii tutulmuştur. METOT 3.2 EKSTRAKTE EDİLMİŞ FOSFOR MİKTARININ SAPTANMASI EN 15959: Ekstrakte Edilmiş Fosfor Miktarının Saptanması Bu metot ring-test’e tabii tutulmuştur. METOT 4 POTASYUM METOT 4.1 SUDA ÇÖZÜNÜR POTASYUM TAYİNİ EN 15477: Gübreler: Suda Çözünür Potasyum Tayini Bu metot ring-test’e tabii tutulmuştur. METOT 5 METOT 5.1 ORGANİK MATERYAL BULUNMAYAN ORTAMLARDA KLORÜR TAYİNİ GüGGübreler- Organik materyal bulunmayan ortamlarda klorür tayini Bu metot ring- Bu metot ring-test’e tabii tutulmuştur. METOT 6 ÖĞÜTME PROSEDÜRÜ İLE İLGİLİ İNCELİK METOT 6.1 ÖĞÜTME İNCELİĞİNİN HESAPLANMASI (KURU PROSEDÜR) EN 15928: Öğütme İnceliğinin Hesaplanması (Kuru Prosedür) Bu metot ring-test’e tabii tutulmamıştır. METOT 6.2 YUMUŞAK DOĞAL FOSFATLARIN ÖĞÜTÜLME İNCELİĞİNİN HESAPLANMASI EN 15924: Yumuşak Doğal Fosfatların Öğütülme İnceliğinin Hesaplanması Bu metot ring-test’e tabii tutulmamıştır. METOT 7 YÜKSEK AZOTLU AMONYUM NİTRAT GÜBRELERİNİN KAREKTERİSTİK ÖZELLİKLERİ VE PATLAMAYA DAYANIM TESTİNİNKONTROL EDİLMESİ İLE İLGİLİ METODLAR, AĞIR METAL İÇERİĞİ VE TERMİK ÇEVRİM SAYISI
PATLAMAYA DAYANIM TESTİNİN TARİFİ Adı geçen test, testin uygulanacağı gübreden hazırlanan bir numune üzerinde uygulanmalıdır. Patlamaya dayanuım testinin uygulanmasından önce, Test edilecek gübre numunesinin tümü 5 defadan fazla olmamak şartıyla termik çevrimden geçirilmelidir.
Aşağıda belirtilen koşullar altında yatay bir çelik tüp içerisinde bulunan gübre numunesi üzerinde patlamaya dayanım testi uygulanmalıdır:
Ek yeri bulunmayan çelik tüp
Tüpü 150 mm lik aralarla ve yatay bir zemin üzerinde yerleştirin. Test iki defa uygulanmalıdır. Eğer her iki test sonunda kurşun silindirlerdeki ezilme % 5 den az ise test kesinlikle pozitif sayılacaktır.
METOT 7. 1 TERMİK ÇEVRİMLERİN UYGULANMASI İLE İLGİLİ METODLAR
METOT 7. 2 YAĞ TUTMA TAYİNİ
METOT 7.3 YANICI MADDELERİN TAYİNİ
(1) 1,5 saatlik reaksiyon zamanı, gümüş nitratın katalizör olarak görev yaptığı reaksiyonda organik maddeler için yeterli bir değerdir. METOT 7. 4 pH DEĞERİNİN TAYİNİ
METOT 7. 5 TANE BÜYÜKLÜĞÜNÜN TAYİNİ
METOT 7. 6 KLOR TAYİNİ (KLORÜR İYONU OLARAK)
Tablo 1
Ö R N E K
37 Vex = 4.9 x 0.1 x --------------------------- = 4.943 37 + 49 METOT 7. 7 BAKIR TAYİNİ
METOT 8 GENEL HÜKÜMLER
1. Reaktifler Analiz metotlarında belirtilen aksi hükümler hariç, analiz için kullanılacak olan bütün reaktifler saf olmak zorundadırlar (p.a.) Mikro element analizleri için reaktiflerin saflığı boş bir deney ile kontrol edilmelidir. Elde edilen sonuçlara göre, ek bir saflaştırma işlemi gerekli olabilir. 2. Su Analiz metotlarında eritici ya da sulandırıcı madde türünün belirtilmediği durumlarda, belirtilen ayrıştırma, sulandırma, durulama veya yıkama çalışmalarında su kullanılır. Normal olarak su demineralize (madensel tuzların arındırılması) ya da saf su olmak zorundadır. Analiz metotlarında belirtilen özel durumlarda, bu su spesifik saflaştırma işlemlerine tabi tutulmak zorundadır. 3. Laboratuvar malzemesi Alışılagelmiş kontrol laboratuvarları ekipmanı yanı sıra, analiz metotlarında tarif edilen aletler spesifik gerekliliklerden dolayı zorunlu olarak beklenilen özel alet ve enstrümanlarla sınırlıdır. Laboratuvarda kullanılan tüm ekipman (alet ve araçlar) laboratuvar şartlarına uygun olmalıdır.”
İKİNCİL ELEMENTLER METOT 8.1 SÜLFAT FORMUNDA BULUNAN TOPLAM KALSİYUMUN, TOPLAM MAGNEZYUMUN, TOPLAM SODYUMUN VE TOPLAM KÜKÜRDÜN EKSTRAKSİYONU
EN 15960: Sülfat Formunda Bulunan Toplam Kalsiyumun, Toplam Magnezyumun, Toplam Sodyumun Ve Toplam Kükürdün Ekstraksiyonu Bu metot ring-test’e tabii tutulmamıştır. METOT 8.2 DEĞİŞİK FORMLARDA BULUNAN TOPLAM KÜKÜRDÜN BELİRLENMESİ EN 15925: Değişik Formlarda Bulunan Toplam Kükürdün Belirlenmesi Bu metot ring-test’e tabii tutulmamıştır. METOT 8.3 SÜLFAT FORMUNDA BULUNAN SUDA ÇÖZÜNÜR KALSİYUM, MAGNEZYUM, SODYUM VE KÜKÜRDÜN EKSTRAKSİYONU EN 15926 Sülfat Formunda Bulunan Suda Çözünür Kalsiyum, Magnezyum, Sodyum ve Kükürdün Ekstraksiyonu Bu metot ring-test’e tabii tutulmamıştır. METOT 8.4 ÇEŞİTLİ FORMLARDAKİ SUDA ÇÖZÜNÜR KÜKÜRDÜN EKSTRAKSİYONU EN 15961: Çeşitli Formlardaki Suda Çözünür Kükürdün Ekstraksiyonu Bu metot ring-test’e tabii tutulmamıştır. METOT 8.5 ELEMENTEL KÜKÜRDÜN EKSTRAKSİYONU VE HESAPLANMASI EN 16032: Elementel Kükürdün Ekstraksiyonu ve Hesaplanması” Bu metot ring-test’e tabii tutulmamıştır. METOT 8.5 ELEMENTEL KÜKÜRDÜN EKSTRAKSİYONU VE HESAPLANMASI EN 16032: Elementel Kükürdün Ekstraksiyonu ve Hesaplanması Bu metot ring-test’e tabii tutulmamıştır. METOT 8.6 OKSALAT ŞEKLİNDE ÇÖKELTTİRİLDİKTEN SONRA AYRILAN KALSİYUMUN MANGANİMETRİK TAYİNİ EN 16196:Gübreler- Oksalat şeklinde çökelttirildikten sonra ayrılan kalsiyumun manganimetrik tayini Bu metot ring-test’e tabii tutulmuştur. METOT 8.7 ATOMİK ABSORPSİYON SPEKTOMETRİSİ İLE MAGNEZYUM MİKTARININ BELİRLENMESİ EN 16197:Gübreler- Atomik absorpsiyon spektometrisi ile magnezyum miktarının belirlenmesi Bu metot ring-test’e tabii tutulmuştur. METOT 8.8 KOMPLEKSOMETRİ İLE MAGNEZYUM MİKTARININ TAYİNİ EN 16198:Gübreler- Kompleksometri ile magnezyum miktarının tayini Bu metot ring-test’e tabii tutulmuştur. METOT 8.9 SÜLFAT MİKTARININ TAYİNİ EN 15749: Gübreler. Üç farklı Metot kullanılarak sülfatların içeriğinin tayini Bu metot ring-test’e tabii tutulmuştur. METOT 8.10 AYRILAN SODYUM MİKTARININ TAYİNİ EN 16199:Gübreler- Alev –emisyon spektrometre ile ayrılan sodyum miktarının tayini Bu metot ring-test’e tabii tutulmuştur. METOT 8.11 KALSİYUM FORMAT İÇİNDEKİ KALSİYUM VE FORMATIN HESAPLANMASI EN 16032: Kalsiyum Format İçindeki kalsiyum ve Formatın Hesaplanması Bu metot ring-test’e tabii tutulmuştur.
METOT 9 MİKRO ELEMENTLER MİKTARI % 10 YA DA DAHA AZ OLAN MİKRO ELEMENTLER METOT 9.1 TOPLAM MİKRO ELEMENTLERİN BELİRLENMESİ
1. Amaç Bu metot, aşağıdaki mikro elementlerin belirlenmesi için bir yöntem ortaya koymaktadır: toplam bor, toplam kobalt, toplam bakır, toplam demir, toplam mangan, toplam molibden ve toplam çinko. Amaç, yukarıda anılan mikro elementlerin toplam miktarını tespit etmek için mümkün olduğu sürece tek bir numune kullanmaktır. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte belirtilen ve aşağıda sıralanan bir ya da birden fazla mikro elementi içeren EC gübrelerini kapsar: bor, kobalt, bakır, demir, mangan, molibden ve çinko. Beyan edilen miktarı % 10’a eşit ya da daha az olan mikro elementlerin tanımlanabilmesi için kullanılır.
3. Prensip Kaynar sulandırılmış hidroklorik asit içinde çözme. Not. Numune ampiriktir ve ürün ile ya da gübrenin başka içerikleri ile tamamlanabilir. Özelliklede bazı mangan oksitleri için ayrıştırılan miktarlar, ürünün içinde bulunan toplam mangandan net olarak çok daha düşük olabilirler. Bu metotla belirlenen miktarın, beyan edilen miktara uygun olup olmadığını kontrol etmek üreticilerin sorumluluğu altındadır. 4. Reaktifler 4.1 Sulandırılmış hidroklorik asit solüsyonu, yaklaşık olarak 6 M Bir hacim hidroklorik asit (HCl, d20 =1,18) ve bir hacim su 4.2 Konsantre amonyak solüsyonu (NH4OH, d20 =0,9) 5. Aletler Elektrikli, ayarlanabilir ısıtıcı. Not. Eğer numune üzerinde borun da tayini amaçlanırsa, borosilikatlı cam ürünler kullanmayınız. Teflon ve silis bu ayrıştırmayı kaynatmak için kullanılabilir. Eğer cam kapların temizlenmesi için bor içeren deterjan kullanılırsa ürünleri çok iyi durulayınız. 6. Numunenin hazırlanması Metot 1’e bakınız. 7. Metot 7.1 Numunenin alınması Ürün içinde element olarak beyan edilen miktara göre 2 ile 10 g arasında bir miktar numune tartınız. Aşağıdaki tablo, en son kullanılacak olan bir solüsyon elde etmek için kullanılır ve uygun bir sulandırılma işleminden sonra her metot için uygun olan bir ölçü aralığında bulunur. Numuneler 1 mg yanılma payı ile tartılır.
Numuneyi 250 ml’lik bir şişeye aktarınız. (tabloya uygun olarak) 7.2. Solüsyonun hazırlanması Eğer gerekli ise numuneyi biraz su ile nemlendiriniz, azar azar ve dikkatlice işleme konan her bir gübre gramı için 10 ml olarak bir hacim sulandırılmış hidroklorik asit (4.1) ekleyiniz daha sonra 50 ml su katınız. Beheri göstergeli bir kapak ile kapatınız ve karıştırınız. Elektirikli ısıtıcı üzerinde kaynatınız ve kaynatmaya 30 dakika devam ediniz, zaman zaman karıştırarak soğumaya bırakınız. İçeriği 250 ya da 500 ml dereceli bir şişeye aktarınız (tabloya bakınız). Hacmi su ile tamamlayınız. Karıştırınız. Kuru bir filtre ile kuru bir kaba süzünüz. Filtre edilen ilk bölümü dökünüz. Ayrıştırılan bölüm tamamen şeffaf olmalı. Şeffaf olan numune üzerinden vakit kaybetmeden tayine geçilmesi uygundur. Aksi takdirde kabı kapatınız. Açıklama: Bor miktarının tespit edilmesi gereken numunelerin pH’sının konsantre amonyak (4.2) ile 4 ile 6 arasındaki bir pH’ya getirilmeleri gerekir. 8.Tayin Her elementin tayini, bu elementlere özgü metotlara uygun olan numuneler üzerinden yapılacaktır. Eğer gerekirse, numunenin içindeki şelatlı ya da komleks halde bulunan organik maddeleri metot 9.3’e göre uzaklaştırınız. Hatırlatmak gerekir ki atomik absorbsiyon yöntemi ile çalışan spektrofotometre ile yapılan tayinler için böyle bir uzaklaştırma genellikle gereksizdir. METOT 9.2 SUDA ERİYEN MİKRO ELEMENTLERİN BELİRLENMESİ
1. Amaç Bu metot, suda eriyen aşağıdaki mikro elementlerin ayrıştırılması için bir yöntem önermektedir: bor, kobalt, bakır demir, mangan, molibden ve çinko. Amaç, yukarıda anılan mikro elementlerin toplam miktarını tespit etmek için mümkün olduğu sürece tek bir numune kullanmaktır. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte verilen ve aşağıda sıralanan bir ya da birden fazla mikro elementi içeren EC gübrelerine uygulanır: bor, kobalt, bakır, demir, mangan, molibden ve çinko. Beyan edilen miktarı % 10’a eşit ya da daha az olan mikro elementlerin tanımlanabilmesi için kullanılır. 3. Prensip Mikro elementler, 20±2°C’deki sıcaklıktaki su içinde çalkalanan gübrelerden ayrıştırılır. Not. Numune ampiriktir, nicel olsun olmasın. 4. Reaktifler 4.1.Sulandırılmış hidroklorik asit, yaklaşık olarak 6 M Bir hacim hidroklorik asit (HCl, yoğunluğu d20 =1,18) ve bir hacim su karıştırınız. 5. Aletler 5.1 Dakikada 35-40 dönüşe ayarlı döner çalkalama aleti 5.2 pH-metre Not. Eğer numune üzerinde borun da tayini amaçlanırsa, borosilikatlı cam ürünler kullanmayınız. Teflon ve silis bu ayrıştırmayı kaynatmak için kullanılabilir. Eğer cam kapların temizlenmesi için bor içeren deterjan kullanılırsa ürünleri çok iyi durulayınız. 6. Numunenin hazırlanması Metot 1’e bakınız. 7. Metot 7.1 7.1.Numunenin alınması Ürün içinde element olarak beyan edilen miktara göre 2 ile 10 g arasında bir miktar numune tartınız. Aşağıdaki tablo, en son kullanılacak olan bir solüsyon elde etmek için kullanılır ve uygun bir sulandırılma işleminden sonra her metot için uygun olan bir ölçü aralığı bulunur. Numuneler 1 mg yanılma payı ile tartılır.
Numuneyi 250 ml’lik bir şişeye aktarınız. 7.2.Solüsyonun hazırlanması 250 ml’lik bir beher için 200 ml, 500 ml’lik bir beher için 400 ml su ekleyiniz. Dikkatlice kapatınız. Elle kuvvetlice sallayınız ki ürün iyice karışsın. Şişeyi karıştırıcının üzerine koyunuz. Aleti 30 dakika süresince çalıştırınız. Hacmi su ile tamamlayınız. Karıştırınız. 7.2 7.3. Test Solüsyonunun hazırlanması Hemen kuru ve temiz bir şişeye süzünüz. Şişeyi kapatınız. Süzmeden hemen sonra tayine geçiniz. Not. Eğer süzülen madde gittikçe bulanırsa, (7.1 ve 7.2)’yi takip ederek yeniden süzünüz(Ve). Tam olarak ölçülmüş 5 ml sulandırılmış hidroklorik asit (4.1) içeren ve daha önceden de kurutulmuş olan (W) hacimli, dereceli bir şişe üzerine süzünüz. Derece çizgisine yetişildiği zaman süzme işlemini durdurunuz. Karıştırınız. Bu şartlarda, sonuçların ifade edilmesinde görülen V değeri: V=Ve x W/ (W-5) Sonuçların ifade edilmesinde görülen sulandırma işlemleri bu V değeri üzerinde yapılır. 8. Tayin Her elementin tayini, bu elementlere özgü metotlara uygun olan numuneler üzerinden yapılacaktır. Eğer varsa, numunenin içindeki şelatlı ya da organik tamamlayıcıları metot 9.3’e göre uzaklaştırınız. Hatırlatmak gerekir ki atomik absorbsiyon yöntemi ile çalışan spektrofotometre ile yapılan tayinler için böyle bir uzaklaştırma genellikle gereksizdir. METOT 9.3 GÜBRE NUMUNELERİNİN İÇİNDEN ORGANİK BİLEŞİKLERİN UZAKLAŞTIRILMASI 1. Amaç Bu metot, gübre numunelerinin içindeki organik bileşiklerin uzaklaştırılması için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I-E’de İz elementli gürelerde öngörüldüğü şekilde toplam veya suda erir içeriği beyan edilen elementlerin bu Yönetmeliğin 9.1 ve 9.2 metotları ile ekstrakte edilen gübre numunelerinin analiz edilmesinde kullanılır. Not: Az miktarda mevcut olan organik maddeler genellikle, atomik absorbsiyon yöntemi ile çalışan spektofotometri tanımlamalarını etkilemez. 3. Prensip Numunenin içinde mevcut olan organik bileşiklerin hidrojen peroksit tarafından oksidasyonu prensibine dayanır. 4. Reaktifleri 4.1 Sulandırılmış hidroklorik asit solüsyonu, yaklaşık olarak 0,5 M Bir hacim hidroklorik asit (HCl, d20 =1,18) ve 20 hacim su karıştırınız. 4.2 Hidrojen peroksit solüsyonu (% 30 H2O2, d20: 1,11); mikro element içermeyen. 5. Aletler Ayarlanabilir elektrikli ısıtıcı. 6. Metot 9.1 ya da 9.2 metodu ile elde edilen solüsyondan 25 ml alınız ve 100 ml’lik bir beher içine koyunuz. Eğer 9.2 metodu kullanıldı ise sulandırılmış hidroklorik asit (4.1) solüsyonundan 5 ml ekleyiniz. Daha sonra 5 ml hidrojen peroksit (4.2) ekleyiniz. Göstergeli bir kapak ile kapatınız. Yaklaşık olarak 1 saat boyunca soğuk ortamda oksidasyonun gerçekleştirilmesine izin veriniz. Daha sonra aşamalı olarak kaynama noktasına götürünüz ve yaklaşık olarak ½ saat kaynatınız. Eğer gerekli ise, ılık olan solüsyonun içine yeniden 5 ml hidrojen peroksit ekleyiniz ve organik bileşiklerin yıkımını takip ediniz ve fazla olan hidrojeni kaynama yöntemi ile uzaklaştırınız. Soğumaya bırakınız ve içeriği 50 ml’lik dereceli bir şişeye aktarınız. Hacmi su ile tamamlayınız. Karıştırınız. Eğer gerek görürseniz süzünüz. Örneklerin alımında ve ürünün mikro elementlerinin yüzdesinin hesaplanmasında yarı yarıya olan bu sulandırma göz önünde bulundurulur.
METOT 9.4 ATOMİK ABSORBSİYON SPEKTROFOTOMETRİ YÖNTEMİ İLE GÜBRE NUMUNELERİNDEKİ MİKRO ELEMENTLERİN TAYİNİ (GENEL İŞLEM MODU)
1. Amaç Bu metot, gübre numunelerinin içindeki bazı mikro elementlerin atomik absorbsiyon spektrofotometri yöntemi ile miktarının tayini için genel olarak bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde toplam veya suda eriyen elementi beyan edilen ve bu Yönetmeliğin 9.1 ve 9.2 metotları ile elde edilen numunelerden mikro elementlerin belirlenmesi için kullanılır. Değişik mikro elementlerin miktarının bu işlem moduna adaptasyonu, her elementin özel metotlarında belirtilmiştir. Not:Az miktarda mevcut olan organik maddeler genellikle, atomik absorbsiyon yöntemi ile çalışan spektofotometri tanımlamalarını etkilemez. 3. Prensip Numuneden istenmeyen kimyasal türleri uzaklaştırmak ya da azaltmak için yapılabilen işlemden sonra, numune, dalga uzunluğu tayini yapılacak elemente ayarlanmış olan spektrofotometrenin en uygun bölgesine cevap verebilecek konsantrasyonda sulandırılır. 4. Reaktifler 4.1 Sulandırılmış hidroklorik asit, yaklaşık olarak 6 M Bir hacim hidroklorik asit (HCl, d20 =1,18) ve bir hacim su 4.2 Sulandırılmış hidroklorik asit, yaklaşık 0,5 M Bir hacim hidroklorik asit (HCl, d20 =1,18) ve 20 hacim su 4.3 Lantan tuzu solüsyonu, litrede 10 g La. Bu reaktif kobalt, demir, mangan ve çinko tayini için kullanılır. Aşağıdaki şekilde gerçekleştirilebilir: a) hidroklorik asit içinde lantan oksitineritilmesi : 1 litrelik dereceli şişeye, 11,73 g lantanoksit (La2O3) süspansiyonu ve 150 ml su koyunuz, daha sonra 120 ml 6 M (4.1) hidroklorik asit ekleyiniz. Eriyinceye kadar bırakınız ve daha sonra 1 litreye su ile tamamlayınız. Karıştırınız. Bu solüsyon yaklaşık olarak 0,5 M hidroklorik asittir. b) Lantan klorürü, lantan sülfatı ya da lantan nitratı 1 litrelik dereceli bir şişeye, 26,7 g lantan klorür heptahidrat (LaCl3 7 H2O) ya da 31,2 g lantan nitrat heksahidrat (La(NO3)3 6H2O) ya da 26,2 g lantan sülfat nonahidrat (La2(SO4)3 9 H2O) 150 ml su içine katınız daha sonra 85 ml 6 M (4.1) hidroklorik asit ekleyiniz, çözülmesine izin veriniz ve daha sonra 1 litreye kadar su ile tamalayınız. Karıştırınız. Bu solüsyon yaklaşık olarak 0,5 M hidroklorik asittir. 4.4 Şahit solüsyonlar Hazırlanmaları için her mikro elemente has olan tayin metotları dikkate alınacaktır. 5. Aletler Tayini gerçekleştirilen elementlerin karakteristik çizgilerini gösterebilecek kaynaklarla donatılmış olan atomik absorbsiyon spektrofotometre. Rahat kullanımı için kimyacı, aleti yapan üreticinin kullanım şartlarına dikkat edecektir ve kullanımına alışık olması gerekir. Gereklilik halinde, kullanılmadan önce aletin ince ayar yapılabilecek donanıma müsait olması gerekir (Co ve Zn). Bir elemente has durumlarda aksi belirtilmediği sürece, kullanılan gazlar hava ve asetilendir. 6. Analiz edilecek numunenin hazırlanması 6.1 Tayini yapılacak elementleri solüsyona koyunuz 9.1 veya 9.2 eğer uygunsa 9.3 metotlarına bakınız. 6.2 Numune solüsyonunun hazırlanması 9.1, 9.2 ya da 9.3 metotlarına göre hazırlanan örnekten bir parçayı su veya hidroklorik asit (4.1) ya da (4.2) ile öyle bir sulandırınız ki son haldeki solüsyonun konsantrasyonu kullanılan şahit solüsyon serisine (7.2) yakın bir halde olsun ve hidroklorik asit konsantrasyonu en az 0,5 M olsun ama 2,5 M’yi de geçmesin. Bu işlem bir ya da birden fazla ard arda yapılan sulandırma işlemi gerektirebilir. Numunenin son haldeki solüsyonundan ml cinsinden hacmi (a) olan bir parça alınız, 100 ml dereceli bir şişeye dökünüz. Demir, kobalt, mangan ve çinko tayini için 10 ml seçilen lantan tuzu (4.3) solüsyonu ekleyiniz. Hacmi, 0,5 M hidroklorik asit (4.2) ile tamamlayınız ve karıştırınız. Bu solüsyon ölçüm için son halini almıştır. Sulandırma faktörü D olsun. 7.Metot 7.1.Boş solüsyonun hazırlanması Gübre numunesinin alımı hariç ayrıştırma işleminde itibaren bütün prosesi boş bir deneme amacıyla uygulayınız. 7.2.Şahit solüsyonlarının hazırlaması Her mikro element için tarif edilen metoda göre 100 ml dereceli şişede hazırlanan çalışma numunesinden yola çıkarak, aletin optimum dozaj çalışma bölgesine uygun olan en az 5 yükselme eğiliminde şahit konsantrasyon solüsyonu alınır. Aksi takdirde deneme için sulandırılmış (6.2) olan solüsyona mümkün olduğu kadar yakın konsantrasyonda hidroklorik asit ile sulandırınız. Kobalt, demir, mangan, çinko tayini için 6.2’de kullanılan lantan tuzundan (4.3) 10 ml katınız. Hacmi 0,5 M hidroklorik asit (4.2) solüsyonu ile tamamlayınız ve karıştırınız. 7.3.Ölçümler Spektrofotometreyi (5) ölçümler için hazırlayınız ve dalga uzunluğunu tayini yapılan elemente has metotta belirtildiği gibi ayarlayınız.Şahit solüsyonu (7.2), deneme numunesini (6.2) ve boş solüsyonu (7.1) üç aşamalı olarak, her püskürtmeden sonra alein saf su ile yıkandığına dikkat ederek püskürtünüz ve sonuçları not ediniz. Şahit solüsyonlardan (7.2) her biri için spektrofotometre tarafından verilen sonuçların ortalamasın not ederek şahit eğrisini çiziniz ve apsiste tayini yapılan her elemente denk gelen konsantrasyonları ml’ye mg olarak ifade ediniz. Bu eğriden yola çıkarak, deneme numuneleri (6.2) ve boş deneme (7.1) ile tayini yapılan elementlerin konsantrasyonlarını belirleyiniz, bu konsantrasyonlar (Xs) ve (Xb) olarak not edilecektir ve ml’de mg olarak ifade edilecektir. 8. Sonuçların ifade edilmesi Gübre elementi (E) yüzdesi eşittir: Gübre % E = [(Xs -Xb) x V x D] / (M x 104) Eğer kullanılan metot (9.3) ise : Gübre % E = [(Xs- Xb) x V x 2D] / (M x 104) Burada E ; yüzde olarak ifade edilen gübre tayin miktarı Xs ; mg/ml olarak ifade edilen deneme solüsyonu (6.2) konsantrasyonu Xb ; mg/ml olarak ifade edilen boş deneme solüsyonu (7.1) konsantrasyonu V ; ml olarak ifade edilen ve 9.1 ya da 9.2 yöntemi ile elde edilen numune hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numune kütlesi D ; sulandırma faktörü hesabı Eğer (a1) (a2) (a3)......(ai) ve (a) birer parça ise ve (V1) (V2) (V3)....(Vi) ve (100) ml olarak ifade edilen ve söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) x (V3/a3) ...... (Vi/ai) x (100/a)
METOT 9.5 GÜBRE NUMUNELERİNDEN BOR TAYİNİ AZOMETİNE-H SPEKTROFOTOMETRELİ METOT
1. Amaç Bu metodun amacı, gübre numunelerinin içindeki Bor(B)’un tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde toplam veya suda eriyen (bor) elementi beyan edilen ve bu Yönetmeliğin 9.1 ve 9.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Borat iyonu azomethine-H solüsyonu ile sarı bir komplex oluşturur veya bunun konsantrasyonu da 410 nm moleküle ayarlı olan absorbsiyon spektrofotometri yöntemi ile tayin edilir. İç içe girme eğiliminde olan iyonlar EDTA tarafından kaplanır. 4. Reaktifler 4.1 EDTA tampon solüsyonu İçinde 300 ml su olan 500 ml dereceli bir şişeye aşağıdakileri ekleyiniz : -75g amonyum asetat (NH4OOCCH3) -10 g etilen diamine tetrasetik asidi disodyum tuzu (Na2EDTA) -40 mI asetik asit (CH3COOH, d20 : 1,05g/mI) 500 ml’ye su ile tamamlayınız. Dikkatlice karıştırınız. Kabın elektrodu tarafından kontrol edilen solüsyonun pH’sı 4,8 ± 0,1 arasında olmak zorundadır. 4.2 Azometin-H solüsyonu 200 ml dereceli bir şişeye: -10 ml tampon solüsyonu (4.1) -400 mg azometine-H (C17H12NNa08S2) -2 g askorbik asit (C6H806) Hacmi su ile tamamlayınız ve karıştırınız. Bu reaktiften çok büyük miktarlar hazırlamayınız çünkü sadece birkaç gün kullanılabilir uygunluktadır. Bor şahit solüsyonu 4.3.1. 100 mg/ml bor çalışma solüsyonu 1 000 ml dereceli bir şişeye, su ile 0,5719 g borik asit (H3Bo3) eritiniz ve 0,1 mg yanılma payı ile tartınız. 1 000 ml’ye kadar su ile tamamlayınız ve karıştırınız. Plastik bir şişeye aktarınız ve soğutucuda bekletiniz. 4.3.2. Bor çalışma solüsyonu (10 mg/ ml) 500 ml dereceli bir şişeye ana solüsyondan 50 ml (4.3.1) ekleyiniz. Hacmi su ile tamamlayınız ve karıştırınız. 5. Aletler Dalga uzunluğu 410 nm’ye ayarlı ve 10 mm optik path’ le donatılmış moleküler absorbsiyon için spektrofotometre. 6. Analiz edilecek numunenin hazırlanması 6.1 Borun solüsyon haline getirilmesi. 9.1 veya 9.2 ya da 9.3 metotlarına bakınız. 6.2 Numune solüsyonunun hazırlanması Numuneden alınan bir parçayı (6.1), (7.2)’ye yakın bor konsantrasyonu elde edene kadar sulandırınız. Ard arda iki sulandırma gerekebilir. Sulandırma faktörü D olsun. 6.3 Düzeltme solüsyonunun hazırlanması Eğer numune solüsyonu (6.2) renkli ise, uygun bir düzeltme solüsyonu hazırlayınız, bunun için plastik bir şişeye 5 ml numune solüsyonundan (6.2), 5 ml EDTA tampon solüsyonundan (4.1) ve 5 ml su koyunuz. Karıştırınız. 7. Metot 7.1 Boş denemenin hazırlanması Gübre numune alımı hariç ayrıştırma işleminden itibaren bütün prosesi uygulayarak boş bir kontrol analizi yapınız. 7.2 Şahit solüsyonlarının hazırlanması 100 ml dereceli bir sıra şişelere, 0,5, 10, 15, 20 ve 25 ml şahit çalışma solüsyonundan (4.3.3) koyunuz. 100 ml’ye su ile tamamlayınız ve karıştırınız. Bu solüsyonlar 0 ile 2,5 mg/ml bor içerir. 7.3 Renk gelişimi Bir sıra plastik şişelere 5 ml şahit solüsyonlarından (7.2), numune solüsyonundan (6.2) ve boş denemeden (7.1) koyunuz. 5 ml tampon EDTA (4.1) solüsyonundan ekleyiniz. 5 ml azomertine-H solüsyonundan (4.2)ekleyiniz. Karıştırınız ve rengin 2,5 ile 3 saat arasında karanlık ortamda gelişmesine izin veriniz. 7.4 Ölçümler Solüsyonların absorbansını (7.3) ve belki düzeltme solüsyonunun absorbansını (6.3) 410 nm dalga uzunluğunda referans olarak su kullanarak ölçünüz. Her yeni ölçümden önce kapları durulayınız. 8. Sonuçların ifade edilmesi (7.2) Şahit solüsyonların konsantrasyonunu apsiste kullanarak bir şahit eğrisi hazırlayınız ve spektrofotometre tarafından verilen uygun absorbans (7.4) değerlerini sıralayınız. Şahit eğrisinden yola çıkarak, boş denemenin (7.1) bor (B) konsantrasyonunu, deneme solüsyonun (6.2) bor (B) konsantrasyonunu tayin ediniz ve eğer deneme solüsyonu renkli ise numune solüsyonunun düzeltme konsantrasyonunu. Bu sonuncusunu hesaplamak için, numune solüsyonu (6.2) absorbans değerinden düzeltme solüsyonunun (6.3) absorbans değerini çıkarınız ve düzeltme numunesinin konsantrasyonunun tayin ediniz. Numune solüsyonu (6.2) konsantrasyonu ya da düzeltme numunesi solüsyonunun konsantrasyonu (Xs) olarak not edilir. Boş numune konsantrasyonu (Xb) olarak not edilir. Gübrenin bor yüzdesi eşittir : % B = [(Xs-Xb) x V x D] / M x 104 Eğer kullanılan metot (9.3) ise : % B = [(Xs-Xb) x V x 2D] / (M x 104) Burada B ; gübrede ağırlıkça yüzde olarak ifade edilen bor miktarı Xs ; mg/ml olarak ifade edilen deneme solüsyonu konsantrasyonu (6.2) düzeltmeli ya da düzeltmesiz Xb ; mg/ml olarak ifade edilen boş denemenin konsantrasyonu (7.1) V ; ml olarak ifade edilen ve 9.1 ya da 9.2 yöntemi ile elde edilen numunenin hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numunenin ağırlığı D ; sulandırma faktörü hesabı Eğer (a1) (a2) ard arda gelen birer parça ise ve (V1) (V2) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2)
METOT 9.6 GÜBRE NUMUNELERİNDEN KOBALT TAYİNİ ATOMİK ABSORBSİYON SPEKTROFOTOMETRELİ METOT
1.Amaç Bu metot, gübre numunelerinin içindeki kobalt tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde toplam veya suda eriyen (kobalt) elementi beyan edilen ve bu Yönetmeliğin 9.1 ve 9.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Numunelere uygun sulandırma işleminden sonra, kobalt atomik absorbsiyon spektrofotometri ile tayin edilir. 4. Reaktifler 4.1. hidroklorik asit solüsyonu yaklaşık 6 M, Metot 9.4. (4.1)’e bakınız 4.2. yaklaşık 0,5 M hidroklorik asit solüsyonu, Metot 9.4 (4.2)’e bakınız 4.3. Lalantan tuzu solüsyonu (10 g/I), Metot 9.4 madde(4.3)’e bakınız 4.4. kobalt şahit solüsyonu 4.4.1.kobalt ana solüsyonu (1000 µg/ml) 250 ml’lik bir beher içine 0,1 mg yanılma payı ile tartılan 1 g metal kobaltı 25 ml 6 M hidroklorik asit (4.1) içinde eritiniz. Tamamen eriyene dek elektrikli ısıtıcı üzerinde ısıtınız. İçeriği 1000 ml’lik bir şişeye aktararak soğumaya bırakınız. 1000 ml’ye dek su ile tamamlayınız. Karıştırınız. 4.4.2 kobalt çalışma solüsyonu (100 µg /ml) 100 ml dereceli bir şişeye 10 ml kobalt ana solüsyonundan (4.4.1) koyunuz. Hacmi, 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. 5. Aletler Metot 9.4, (5)’de belirtilen atomik absorbsiyon spektrofotometre. Alet kobalta özgü (240,7 nm) iz kaynakları ile donatılmış olmalı. Alet, geçmişi düzeltmeyede izin vermelidir. 6. Analiz numunesinin hazırlanması 6.1. kobaltın solüsyon haline getirilmesi, 9.1 veya 9.2 ya da 9.3 metotlarına bakınız. 6.2 numune solüsyonunun hazırlanması 9.4 metodunun 6.2 maddesine bakınız. Numune solüsyonu % 10 (v/v) lantan tuzu (4.3) içermesi gerekir. 7. Metot 7.1 Boş solüsyonun hazırlanması 9.4 metodunun (7.1) maddesine bakınız. Boş numune solüsyonu, (6.2)’de kullanılan lantan tuzu solüsyonundan % 10 (v/v)(hacimce) içermesi gerekir. 7.2 Şahit solüsyonlarının hazırlaması, 9.4 metot, (7.2)’ye bakınız. 0 ile 5 mg/ml kobalt arasındaki en uygun dozaj aralığı için, 100 ml dereceli bir sıra şişelere, 0, 0,5, 1, 2, 3, 4 ve 5 ml çalışma solüsyonundan (4.4.2) koyunuz. Gerekli olursa, numune solüsyonuna mümkün olduğunca yakın konsantrasyona sahip olması için hidroklorik asit katınız. Her şişeye 10 ml 6.2’de kullanılan lantan tuzu solüsyonu ekleyiniz. 100 ml’ye dek 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. Bu solüsyonlar 0, 0,5, 1, 2, 3, 4 ve 5 mg/ml kobalt içerir. 7.3 Ölçümler Metot 9.4 (7.3)’e bakınız. 240,7 nm dalga uzunluğunda ölçüm yapmak için spektrofotometreyi (5) hazırlayınız. 8. Sonuçların ifade edilmesi, metot 9.4, (8)’e bakınız. Gübredeki kobalt yüzdesi eşittir : Co % = [(Xs-Xb) x V x D] / M x 104 Eğer kullanılan metot (9.3) ise : Co % = [(Xs Xb) x V x 2D] / (M x 104) Burada Co ; gübrede yüzde olarak ifade edilen miktar Xs ; µg/ml olarak ifade edilen deneme solüsyonu konsantrasyonu (6.2) düzeltmeli ya da düzeltmesiz Xb ; µg/ml olarak ifade edilen boş denemenin konsantrasyonu (7.1) V ; ml olarak ifade edilen ve 9.1 ya da 9.2 yöntemi ile elde edilen numunenin hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numunenin ağırlığı D ; sulandırma faktörü hesabı Eğer (a1) (a2) (a3)........ (ai) ve (a) ard arda gelen birer parça ise ve (V1) (V2) (V3) .... (Vi) ve (100) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) x (V3/a3)x.x.x.x (Vi/ai) x (100/a) METOT 9.7 GÜBRE NUMUNELERİNDEN BAKIR TAYİNİ ATOMİK ABSORBSİYON SPEKTROFOTOMETRELİ METOT 1. Amaç Bu metot, gübre numunelerinin içindeki bakır tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I’de öngörüldüğü şekilde toplam (bakır) veya suda eriyen (bakır) elementi beyan edilen ve bu Yönetmeliğin 9.1 ve 9.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Numunelere uygun sulandırma işleminden sonra, bakır atomik absorbsiyon spektrofotometri ile tayin edilir. 4. Reaktifler 4.1 Yaklaşık 6 M hidroklorik asit solüsyonu, metot 9.4, (4.1)’e bakınız 4.2 Yaklaşık 0,5 M hidroklorik asit solüsyonu, metot 9.4, (4.2)’e bakınız 4.3 Hidrojen peroksit solüsyonu (% 30’luk, H2O2, d20 : 1,11), mikro elementler hariç 4.4 Bakır şahit solüsyonları 4.4.1. 1000 mg/ml bakır ana solüsyonu 250 ml’lik bir beher içinde 0,1 mg yanılma payı ile tartılan 1 g metal bakırı 25 ml 6 M hidroklorik asit (4.1) ile eritiniz ve buraya 5 ml hidrojen peroksit (4.3) ekleyiniz. Tamamen eriyene dek ısıtıcılı plaka üzerinde ısıtınız. İçeriği 1000 ml’lik bir şişeye aktararak soğumaya bırakınız. 1000 ml’ye dek su ile tamamlayınız. Karıştırınız. 4.4.2 100 mg/ml bakır çalışma solüsyonu 200 ml dereceli bir şişeye 20 ml bakır ana solüsyonundan (4.4.1) koyunuz. Çözeltiyi 200 ml’ye dek 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. 5. Aletler 9.4 metot, 5 maddede belirtilen atomik absorbsiyon spektrofotometre. Alet, bakıra özgü (324,8 nm) iz kaynakları ile donatılmış olmalıdır. 6. Numunenin hazırlanması 6.1. Bakırın solüsyon haline getirilmesi, 9.1. veya 9.2 ya da 9.3 metotlarına bakınız. 6.2. Numune solüsyonunun hazırlanması, 9.4 Metodunun 6.2 maddesine bakınız. 7. Metot 7.1.Boş denemenin hazırlanması, 9.4 metodunun 7.1 maddesine bakınız. 7.2 Şahit solüsyon hazırlaması, 9.4 metot, 7.2 maddeye bakınız. 0 ile 5 mg/ml bakır arasındaki en uygun dozaj aralığı için, 100 ml dereceli sıra şişelere, 0, 0,5 , 1, 2, 3, 4 ve 5 ml çalışma solüsyonundan (4.4.2) koyunuz. Gerekli olursa, numune solüsyonuna (6.2) mümkün olduğunca yakın konsantrasyona sahip olması için hidroklorik asit katınız. 100 ml’ye kadar 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. Bu solüsyonlar 0, 0,5 , 1, 2, 3, 4 ve 5 mg/ml bakır içerir. 7.3 Ölçümler 9.4 metodunun 7.3 maddesine bakınız. 324,8 nm dalga uzunluğunda ölçüm yapmak için spektrofotometreyi (5) hazırlayınız. 8. Sonuçların ifade edilmesi, 9.4 metot, 8 maddeye bakınız. Gübredeki bakır yüzdesi eşittir : Cu % = [(Xs -Xb) x V x D] / M x 104 Eğer kullanılan metot (9.3) ise : Cu % = [(Xs Xb) x V x 2D] / (M x 104) Burada Cu ; gübrede yüzde olarak ifade edilen bakır miktarı Xs ; µg/ml olarak ifade edilen deneme solüsyonu konsantrasyonu (6.2) düzeltmeli ya da düzeltmesiz Xb ; µg/ml olarak ifade edilen boş denemenin konsantrasyonu (7.1) V ; ml olarak ifade edilen ve 9.1 ya da 9.2 yöntemi ile elde edilen numunenin hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numunenin ağırlığı D ; sulandırma faktörü hesabı Eğer (a1) (a2) (a3)........ (ai) ve (a) ard arda gelen birer parça ise ve (V1) (V2) (V3) .... (Vi) ve (100) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) x (V3/a3) x.x.x.x.x (Vi/ai) x (100/a) METOT 9.8 GÜBRE NUMUNELERİNDEN DEMİR TAYİNİ ATOMİK ABSORBSİYON SPEKTROFOTOMETRELİ METOT 1. Amaç Bu metot, gübre numunelerinin içindeki demir tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I’de öngörüldüğü şekilde toplam (demir) veya suda eriyen (demir) elementi beyan edilen ve bu Yönetmeliğin 9.1 ve 9.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Numunelere uygun sulandırma işleminden sonra, demir atomik absorbsiyon spektrofotometri ile tayin edilir. 4. Reaktifleri 4.1. Yaklaşık 6 M hidroklorik asit solüsyonu, metot 9.4, (4.1)’e bakınız 4.2. Yaklaşık 0,5 M hidroklorik asit solüsyonu, metot 9.4, (4.2)’e bakınız 4.3. Hidrojen peroksit solüsyonu (H2O2, d20 : 1,11) % 30, mikro elementler hariç 4.4. Litrede 10 g La, lantan tuzu solüsyonu, 9.4 , (4.3)’e bakınız 4.5 Demir şahit solüsyonu 4.5.1. 1000 mg/ml demir ana solüsyonu 500 ml’lik bir beher içine 0,1 mg yanılma payı ile tartılan 1 g saf demiri 200 ml 6 M hidroklorik asit (4.1) içinde eritiniz ve buraya 15 ml hidrojen peroksidi (4.3) ekleyiniz. Tamamen eriyene dek ısıtıcılı plaka üzerinde ısıtınız. İçeriği 1000 ml’lik bir şişeye aktararak soğumaya bırakınız. Hacmi su ile tamamlayınız. Karıştırınız. 4.5.2 100 mg/ml demir çalışma solüsyonu 200 ml dereceli bir şişeye 20 ml demir ana solüsyonundan (4.5.1) koyunuz. 200 ml’ye dek 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. 5. Aletler 9.4 metot, 5 maddede belirtilen atomik absorbsiyon spektrofotometre. Alet, demire özgü (248,3 nm) iz kaynakları ile donatılmış olmalı. 6. Numunenin hazırlanması 6.1 Demirin solüsyon haline getirilmesi, 9.1 veya 9.2 ya da 9.3 metotlarına bakınız. 6.2 Numune solüsyonunun hazırlanması, 9.4 metodunun 6.2 maddesine bakınız. Numune solüsyonu % 10 (v/v) lantan tuzu içermek zorundadır. 7. Metot 7.1 Boş denemenin hazırlanması 9.4 metodunun 7.1 maddesine bakınız. Boş deneme solüsyonu, 6.2’de kullanılan % 10 (V/V) lantan tuzu solüsyonu içermek zorundadır. 7.2 Şahit solüsyonunun hazırlaması, 9.4 metot, 7.2 maddeye bakınız. 0 ile 10 mg/ml demir arasındaki en uygun dozaj aralığı için, 100 ml dereceli bir sıra şişelere, 0, 2, 4, 6, 8 ve 10 ml çalışma solüsyonundan (4.5.2) koyunuz. Gerekli olursa, numune solüsyonuna mümkün olduğunca yakın konsantrasyona sahip olması için hidroklorik asit katınız. 6.2’de kullanılan lantan tuzu solüsyonundan 10 ml ekleyiniz. Hacmi 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. Bu solüsyonlar 0, 2, 4, 6, 8 ve 10 mg/ml demir içerir. 7.3. Ölçümler 9.4 metodunun 7.3 maddesine bakınız. 248,3 nm dalga uzunluğunda ölçüm yapmak için spektrofotometreyi (5) hazırlayınız. 8. Sonuçların ifade edilmesi, 9.4 metot, 8. maddeye bakınız. Gübredeki demir yüzdesi : Fe % = [(Xs- Xb) x V x D] / M x 104 Eğer kullanılan metot (9.3) ise : Fe % = [(Xs Xb) x V x 2D] / (M x 104) Burada Fe ; gübrede yüzde olarak ifade edilen demir miktarı Xs ; µg/ml olarak ifade edilen deneme solüsyonu konsantrasyonu (6.2) düzeltmeli ya da düzeltmesiz Xb ; µg/ml olarak ifade edilen boş denemenin konsantrasyonu (7.1) V ; ml olarak ifade edilen ve 9.1 ya da 9.2 yöntemi ile elde edilen numunenin hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numunenin ağırlığı D ; sulandırma faktörü hesabı Eğer (a1) (a2) (a3)........ (ai) ve (a) ard arda gelen birer parça ise ve (V1) (V2) (V3) .... (Vi) ve (100) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) x (V3/a3) x.x.x.x.x (Vi/ai) x (100/a) METOT 9.9 GÜBRE NUMUNELERİNDEN MANGAN TAYİNİ ATOMİK ABSORBSİYON SPEKTROFOTOMETRELİ METOT 1. Amaç Bu metot, gübre numunelerinin içindeki mangan tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I öngörüldüğü şekilde toplam (mangan) veya suda eriyen (mangan) elementi beyan edilen ve bu Yönetmeliğin 9.1 ve 9.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Numunelere uygun sulandırma işleminden sonra, mangan atomik absorbsiyon spektrofotometri ile tayin edilir. 4. Reaktifler 4.1 yaklaşık 6 M hidroklorik asit solüsyonu, metot 9.4 ( 4.1)’e bakınız 4.2 yaklaşık 0,5 M hidroklorik asit solüsyonu, metot 9.4 ( 4.2)’e bakınız 4.3 litreye 10 g La, lantan tuzu solüsyonu, metot 9.4 ( 4.3)’e bakınız 4.4 mangan şahit solüsyonu 4.4.1. 1000 mg/ml mangan ana solüsyonu 250 ml’lik bir beher içinde 0,1 mg yanılma payı ile tartılan 1 g toz manganı 25 ml 6 M hidroklorik asit (4.1) ile eritiniz. Tamamen eriyene dek ısıtıcılı plaka üzerinde ısıtınız. İçeriği 1000 ml’lik bir şişeye aktararak soğumaya bırakınız. Hacmi su ile tamamlayınız. Karıştırınız. 4.4.2 100 mg/ml mangan çalışma solüsyonu 200 ml dereceli bir şişede 20 ml mangan ana solüsyonunu (4.4.1) 0,5 M hidroklorik asit (4.2) ile eritiniz. 200 ml’ye dek 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. 5. Aletler Metot 9.4’ün 5. maddesinde belirtilen atomik absorbsiyon spektrofotometre. Alet, mangana özgü (279,6 nm) iz kaynakları ile donatılmış olmalı. 6. Numunenin hazırlanması 6.1. manganın solüsyon haline getirilmesi, 9.1 veya 9.2 ya da 9.3 metotlarına bakınız. 6.2. numune solüsyonunun hazırlanması, 9.4 metodunun 6.2 maddesine bakınız. Numune solüsyonu % 10 (V/V) lantan tuzu içermek zorundadır. 7. Metot 7.1 Boş denemenin hazırlanması, 9.4 metodunun 7.1 maddesine bakınız. Boş deneme solüsyonu, 6.2’de kullanılan % 10 (V/V) lantan tuzu içermek zorundadır. 7.2 Şahit solüsyon hazırlaması, 9.4 metot, 7.2 maddeye bakınız. 0 ile 5 mg/ml mangan arasındaki en uygun dozaj aralığı için, 100 ml dereceli bir sıra şişelere, 0, 0,5 , 1, 2, 3, 4 ve 5 ml çalışma solüsyonundan (4.4.2) koyunuz. Gerekli olursa, numune solüsyonuna mümkün olduğunca yakın konsantrasyona sahip olması için hidroklorik asit katınız. 6.2’de kullanılan lantan tuzu solüsyonundan 10 ml ekleyiniz. Hacmi 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. Bu solüsyonlar 0, 0,5 , 1, 2, 3, 4 ve 5 mg/ml demir içerir. 7.3 Ölçümler 9.4 metodunun 7.3 maddesine bakınız. 279,6 nm dalga uzunluğunda ölçüm yapmak için spektrofotometreyi (5) hazırlayınız. 8. Sonuçların ifade edilmesi 9.4 metot (8). maddeye bakınız. Gübredeki mangan yüzdesi eşittir : Mn % = [(Xs Xb) x V x D] / M x 104 Eğer kullanılan metot (9.3) ise : Mn % = [(Xs Xb) x V x 2D] / (M x 104) Burada Mn ; gübrede yüzde olarak ifade edilen mangan miktarı Xs ; µg/ml olarak ifade edilen deneme solüsyonu konsantrasyonu (6.2) düzeltmeli ya da düzeltmesiz Xb ; µg/ml olarak ifade edilen boş denemenin konsantrasyonu (7.1) V ; ml olarak ifade edilen ve 9.1 ya da 9.2 yöntemi ile elde edilen numunenin hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numunenin ağırlığı D ; sulandırma faktörü hesabı Eğer (a1) (a2) (a3)........ (ai) ve (a) ard arda gelen birer parça ise ve (V1) (V2) (V3) .... (Vi) ve (100) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) x (V3/a3) x.x.x.x.x (Vi/ai) x (100/a) METOT 9.10 GÜBRE NUMUNELERİNDEN MOLİBDEN TAYİNİ BİR KOMPLEKSİN AMONYUM THİOSİNATE SPEKTROFOTOMETRİ METODU 1. Amaç Bu metot, gübre numunelerinin içindeki molibden tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde toplam (molibden) veya suda eriyen (molibden) elementi beyan edilen ve bu Yönetmeliğin 9.1 ve 9.2 metotları ile elde edilen gübre numunelerinin ayrıştırmalarında kullanılır. 3. Prensip Molibden (V), asitli ortamda SCN iyonları ile birlikte bir kompleks oluşturur. [MoO(SCN)5]2. Molibdenli kompleks n-butil asetatı tarafından ayrıştırılır. Demir gibi rahatsızlık verici olan iyonlar sulu aşamada uzaklaştırılır. Sarı- turuncu renk moleküler absorbsiyon spektrofotometri yöntemi ile 470 nm’de tayin edilir. 4. Reaktifleri 4.1. yaklaşık 6 M hidroklorik asit solüsyonu, metot 9.4 ( 4.1)’e bakınız 4.2. 1,5 M hidroklorik asit ortamında 70 mg/l bakır solüsyonu 1000 ml dereceli bir şişeye, 0,1 mg yanılma payı ile tartılan 275 mg bakır sülfatı (CuSO4 5H2O) ve 250 ml 6 M hidroklorik asit (4.1) ile eritiniz. 1000 ml’ye kadar su ile tamamlayınız ve karıştırınız. 4.3. 50 g/l askorbik asit solüsyonu 1000 ml dereceli bir şişeye su ile beranber 50 g askorbik asit (C6H8O6) eritiniz. 1000 ml’ye su ile tamamlayınız, karıştırınız ve soğutucuda saklayınız. 4.4. n-butil asetat 4.5. 0,2 M Amonyum tiyosinat solüsyonu 1000 ml dereceli bir şişeye su ile 15,224 g NH4SCN eritiniz. 1000 ml’ye kadar su ile tamamlayınız, karıştırınız ve renkli bir şişede saklayınız. 4.6. 2 M Hidroklorik ortamda 50 g/l kalay klorür solüsyonu Solüsyon tamamen şeffaf olmalı ve kullanılmadan az önce hazırlanmalıdır. Çok saf olan kalay klorür solüsyonu kullanınız aksi takdirde solüsyon şeffaf olmaz. 100 ml solüsyon hazırlamak için 5 g kalay klorür (SnCl22H2O) 35 ml 6 M hidroklorik asit (4.1) içinde eritiniz. 10 ml bakır solüsyonundan (4.2) ekleyiniz. 100 ml’ye kadar su ile tamamlayınız ve karıştırınız. 4.7. molibden şahit solüsyonu 4.7.1. 500 µg /ml molibden ana solüsyonu 1000 ml’lik bir beher içinde 0,1 mg yanılma payı ile tartılan 0,920 g amonyum molibdat [(NH4)6Mo7O24 4H2O] 6 M hidroklorik asit (4.1) içinde eritiniz. 1000 ml’yi aynı solüsyon ile tamamlayınız ve karıştırınız. 4.7.2. 25 mg/ml molibden ara solüsyonu 500 ml dereceli bir şişeye 25 ml ana solüsyondan (4.7.1) koyunuz. 500 ml’ye kadar 6 M hidroklorik asit (4.1) ile tamamlayınız ve karıştırınız. 4.7.3. 2,5 µg /ml molibden çalışma solüsyonu 100 ml dereceli bir şişeye 10 ml ara solüsyondan (4.7.2) koyunuz. 100 ml’ye kadar 6 M hidroklorik asit (4.1) ile tamamlayınız ve karıştırınız. 5. Aletler 5.1. moleküler absorbsiyon spektrofotometre 470 nm’ye ayarlı olup optik parkur boyunca 20 nm kaplarla donatılmıştır. 5.2. 200 ya da 250 ml’lik çöktürme hunileri 6. Analiz edilecek numunenin hazırlanması 6.1 Molibden solüsyonunun hazırlanması, 9.1 veya 9.2 ya da 9.3 metotlarına bakınız. 6.2.Test solüsyonunun hazırlanması 6 M hidroklorik asit (4.1) solüsyonu ile numunenin bir parçasını (6.1) yakın bir molibden konsantrasyonu elde edecek şekilde sulandırınız. Sulandırma faktörü D olsun. Son sulandırma solüsyonuna 1 ile 12 mg molibden içeren bir parça (a) katınız ve çökertme ampulüne (5.2) koyunuz. 50 ml’ye kadar 6 M hidroklorik asit (4.1) ile tamamlayınız. 7. Metot 7.1 Boş solüsyonun hazırlanması Gübre numunesinin alımı hariç analiz işleminden itibaren bütün prosesi uygulayarak boş bir deneme solüsyonu hazırlayınız. 7.2 Şahit solüsyon serisi için solüsyonların hazırlaması Aletin optimum cevaplama bölgesine uygun olan ve büyüyen tenörlü en az 6 şahit solüsyondan oluşan bir seri hazırlayınız. 0 ile 12,5 mg molibden aralığı için 0, 1, 2, 3, 4 ve 5 ml çalışma solüsyonu (4.7.3) koyunuz ve çökertme ampullüne (5.2) aktarınız. 50 ml 6 M hidroklorik asit (4.1) ekleyiniz. Ampuller: 0, 2,5 , 5, 7,5 10 ve 12,5 ml molibden içerir. 7.3 Kompleksin ayrılması ve geliştirilmesi her bir ampulde (6.2, 7.1 7.2) aşamalı olarak sırasıyla aşağıdakileri ekleyiniz: -10 ml bakır solüsyon (4.2) -20 ml askorbik asit solüsyonu (4.3) Karıştırınız ve 2 ile 3 dakika bekleyiniz. Daha sonra aşağıdakileri ekleyiniz: -10 ml n-butil asetatı (4.4) tam ölçen bir pipet yardımı ile ekleyiniz. -20 ml tiosinat solüsyonu (4.5) Kompleksi organik bir halde iken ayrıştırabilmek için 1 dakika boyunca çalkalayınız ve çökmeye bırakınız; iki halin ayrılmasından sonra sulu hali tamamen ayırınız ve dökünüz. Daha sonra organik hali 10 ml etain klorür (II) (4.6) solüsyonu ile yıkayınız. Bir dakika boyunca çalkalayınız. Çökmeye bırakınız ve sulu hali tamamen uzaklaşırınız. Organik hali bir deney tüpüne aktarınız, bu olay süspansiyon haldeki su damlalarını toplamak için elverişlidir. 7.4 Ölçümler Solüsyonların (7.3) absorbasyonunu 470 nm dalga uzunluğunda, serinin 0 µg/ml molibdenli (7.2) şahit solüsyonlarını referans olarak kullanarak ölçünüz. 8. Sonuçların ifade edilmesi Şahit solüsyonların (7.2) mg olarak ifade edilen molibden kütlelerini absiste, spektrofotometre tarafından verilen absorbans (7.4) verilerine uygun olan değerlerinin karşılığında belirterek şahit eğrisini hazırlayınız. Şahit eğrisinden yola çıkarak numune solüsyonundaki (6.2) ve boş denemedeki (7.1) molibden kütlelerini tayin ediniz. Bu kütleler (Xs) (Xb) olarak not edilecektir. Gübredeki molibden yüzdesi eşittir: Mo % = [(Xs-Xb) x V/a x D] / (M x 104) Eğer kullanılan metot (9.3) ise : Mo % = [(Xs-Xb) x V/a x 2D] / (M x 104) Burada M ; gübrede yüzde olarak ifade edilen molibden miktarı a ; son sulandırma solüsyonundan alınan parçanın ml olarak ifade edilen kütlesi Xs ; deneme solüsyonundaki (6.2) molibdenin mg olarak ifade edilen kütlesi Xb ; numune parçasının (6.2) (a) kütlesine uygun olan ve mg olarak ifade edilen boş deneme solüsyonundaki (7.1) molibden kütlesi V ; ml olarak ifade edilen ve 9.1 ya da 9.2 yöntemi ile elde edilen numunenin kütlesi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numune kütlesi D ; sulandırma faktörü hesabı Eğer (a1), (a2) ard arda gelen birer parça ise ve (V1), (V2) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) METOT 9.11 ATOMİK ABSORBSİYON SPEKTROFOTOMETRİ YÖNTEMİ İLE GÜBRE NUMUNELERİNDEKİ ÇİNKO TAYİNİ 1. Amaç Bu metot, gübre numunelerinin içindeki çinkonun atomik absorbsiyon spektrofotometri yöntemi ile tayinidir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde toplam (çinko) veya suda eriyen (çinko) elementi beyan edilen ve bu Yönetmeliğin 9.1 ve 9.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Numunelere uygun sulandırma işleminden sonra çinko atomik absorbsiyon spektrofotometri ile tayin edilir. 4. Reaktifler 4.1 yaklaşık 6 M hidroklorik asit solüsyonu, metot 9.4 ( 4.1)’e bakınız 4.2 yaklaşık 0,5 M hidroklorik asit solüsyonu, metot 9.4 ( 4.2)’e bakınız 4.3 litrede 10 g La, lantan tuzu solüsyonu, metot 9.4 ( 4.3)’e bakınız 4.4 çinko şahit solüsyonu 4.4.1. 1000 µg /ml çinko ana solüsyonu 1000 ml’lik dereceli bir şişe içine 0,1 mg yanılma payı ile tartılan 1 g çinkoyu 25 ml 6 M hidroklorik asit (4.1) içinde eritiniz. Tamamen eridikten sonra 1000 ml’ye dek su ile tamamlayınız. Karıştırınız. 4.4.2 100 mg/ml çinko çalışma solüsyonu 200 ml dereceli bir şişeye 20 ml çinko ana solüsyonunu (4.4.1) 0,5 M hidroklorik asit (4.2) ile sulandırınız. 200 ml’ye kadar 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. 5. Aletler 9.4 metot, (5)’de belirtilen atomik absorbsiyon spektrofotometre. Alet çinkoya özgü (213,8 nm) iz kaynakları ile donatılmış olmalı. Alet düzeltmelere izin verebilmelidir. 6. Numunenin hazırlanması 6.1 Çinkonun solüsyon haline getirilmesi, 9.1 veya 9.2 ya da 9.3 metotlarına bakınız. 6.2 Numune solüsyonunun hazırlanması, 9.4 metodunun (6.2) maddesine bakınız. Numune solüsyonu % 10 (V/V) lantan tuzu içermesi gerekir. 7. Metot 7.1 Boş denemenin hazırlanması, 9.4 metodunun 7.1 maddesine bakınız. Boş numune solüsyonu, 6.2’de kullanılan lantan tuzu solüsyonundan % 10 (V/V) içermesi gerekir. 7.2 Şahit solüsyon hazırlaması, 9.4 metot, 7.2 maddeye bakınız. 0 ile 5 mg/ml çinko arasındaki en uygun dozaj aralığı için, 100 ml dereceli bir sıra şişelere, 0, 0,5 , 1, 2, 3, 4 ve 5 ml çalışma solüsyonundan (4.4.2) koyunuz. Gerekli olursa, numune solüsyonuna mümkün olduğunca yakın konsantrasyona sahip olması için hidroklorik asit katınız. Her şişeye 10 ml 6.2’de kullanılan lantan tuzu solüsyonu ekleyiniz. 100 ml’ye dek 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. Bu solüsyonlar 0, 0,5 , 1, 2, 3, 4 ve 5 mg/ml çinko içerir. 7.3 Ölçümler 9.4 metodunun 7.3 maddesine bakınız. 213,8 nm dalga uzunluğunda ölçüm yapmak için spektrofotometreyi (5) hazırlayınız. 8. Sonuçların ifade edilmesi: 9.4 metot, 8 maddeye bakınız. Gübredeki çinko yüzdesi eşittir : Zn % = [(Xs -Xb) x V x D] / (M x 104) Eğer kullanılan metot (9.3) ise : Zn % = [(Xs -Xb) x V x 2D] / (M x 104) Burada Zn ; gübrede yüzde olarak ifade edilen çinko miktarı Xs ; deneme solüsyonundaki (6.2) molibdenin mg olarak ifade edilen kütlesi Xb ; numune parçasının (6.2) (a) kütlesine uygun olan ve mg olarak ifade edilen boş deneme solüsyonundaki (7.1) molibden kütlesi V ; ml olarak ifade edilen ve 9.1 ya da 9.2 yöntemi ile elde edilen numunenin kütlesi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numune kütlesi D ; sulandırma faktörü hesabı Eğer (a1), (a2), (a3).............. (ai) ve (a) ard arda gelen birer parça ise ve (V1), (V2), (V3), .......... (Vi) ve (100) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir: D = (V1/a1) x (V2/a2) x (V3/a3) x.x.x.x.x(Vi/ai) x (100/a)
METOT 10 MİKTARI % 10’DAN FAZLA OLAN MİKRO ELEMENTLER METOT 10.1 TOPLAM MİKRO ELEMENTLERİN BELİRLENMESİ 1.Amaç Bu metot, aşağıdaki mikro elementlerin belirlenmesi için bir yöntem ortaya koymaktadır : toplam bor, toplam kobalt, toplam bakır, toplam demir, toplam manganez, toplam molibden ve toplam çinko. Amaç, yukarıda anılan mikro elementlerin toplam tenörünü tespit etmek için mümkün olduğu sürece tek bir numune kullanmaktır. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte belirtilen ve aşağıda sıralanan bir ya da birden fazla mikro elementi içeren EC gübrelerini kapsar: bor, kobalt, bakır, demir, manganez, molibden ve çinko. Beyan edilen tenörü % 10’dan fazla olan mikro elementlerin tanımlanabilmesi için kullanılır. 3. Prensip Solüsyon sulandırılmış hidroklorik asit içinde kaynatılır. Not. Numune ampiriktir ve ürün ile ya da gübrenin başka içerikleri ile tamamlanabilir. Özelliklede bazı manganez oksitleri için ayrıştırılan miktarlar, ürünün içinde bulunan toplam manganezden net olarak çok daha düşük olabilirler. Bu metotla belirlenen miktarın, beyan edilen tenöre uygun olup olmadığını kontrol etmek üreticilerin sorumluluğu altındadır. 4. Reaktifler 4.1.Sulandırılmış hidroklorik asit, yaklaşık olarak 6 M Bir hacim hidroklorik asit (d20 =1,18) ve bir hacim su 4.2 konsantre amonyak (NH4OH, d20 =0,9g/ml) 5. Aletler 5.1 Elektrikli, ayarlanabilir ısıtıcı. 5.2 pH-metre Not. Eğer numune üzerinde borun da tayini amaçlanırsa, borosilikatlı cam ürünler kullanmayınız. Teflon ve silis bu ayrıştırmayı kaynatmak için kullanılabilir. Eğer cam kapların temizlenmesi için bor içeren deterjan kullanılırsa ürünleri çok iyi durulayınız. 6.Numunenin hazırlanması Metot 1’e bakınız. 7.Metot 7.1.Numunenin alınması Ürün içinde element olarak beyan edilen tenöre göre 1 ile 2 g arasında bir miktar numune tartınız. Aşağıdaki tablo, en son kullanılacak olan bir solüsyon elde etmek için kullanılır ve uygun bir sulandırılma işleminden sonra her metot için uygun olan bir ölçü aralığında bulunur. Numuneler 1 mg yanılma payı ile tartılır.
Numuneler 250 ml’lik şişelere aktarınız. 7.2.Solüsyonun hazırlanması Eğer gerekli ise numuneyi biraz su ile nemlendiriniz, azar azar ve dikkatlice işleme konan her bir gübre gramı için 10 ml olarak bir hacim sulandırılmış hidroklorik asit (4.1) ekleyiniz daha sonra 50 ml su katınız. Beheri göstergeli bir kapak ile kapatınız ve karıştırınız. Isıtıcılı plaka üzerinde kaynatınız ve kaynatmaya 30 dakika devam ediniz, zaman zaman karıştırarak soğumaya bırakınız. İçeriği 500 ml dereceli bir şişeye aktarınız. Hacmi su ile tamamlayınız. Karıştırınız. Kuru bir filtre ile kuru bir kaba süzünüz. Filtre edilen ilk bölümü dökünüz. Ayrıştırılan bölüm tamamen şeffaf olmalıdır. Şeffaf olan numune üzerinden vakit kaybetmeden tayine geçilmesi uygundur. Aksi taktirde kabı kapatınız. Not : bor tenörünün tespit edilmesi gereken numunelerin pH’sının konsantre amonyak (4.2) ile 4 ile 6 arasındaki bir pH’ya getirilmeleri gerekir. 8.Tayin Her elementin tayini, bu elementlere özgü metotlara uygun olan numuneler üzerinden yapılacaktır. 10.5, 10.6, 10.7, 10.9 ve 10.10 sayılı metotlar şelatlı ya da kompleks halde bulunan elementleri tayin etmede kullanılamaz. Bu durumda, tayinden önce 10.3 metoda başvurmak gerekir. Atomik absorbsiyon spektrofotometri yöntemi ile yapılan tayinlerde (10.8, ve 10.11 sayılı metotlar) böyle bir işleme gerek kalmaz. METOT 10.2 SUDA ERİYEN MİKRO ELEMENTLERİN BELİRLENMESİ 1.Amaç Bu metot, suda eriyen aşağıdaki mikro elementlerin ayrıştırılması için bir yöntem önermektedir: bor, kobalt, demir, manganez, molibden ve çinko. Amaç, yukarıda anılan mikro elementlerin toplam tenörünü tespit etmek için mümkün olduğu sürece tek bir numune kullanmaktır. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte verilen ve aşağıda sıralanan bir ya da birden fazla mikro elementi içeren EC gübrelerine uygulanır: bor, kobalt, bakır, demir, manganez, molibden ve çinko. Beyan edilen tenörü % 10’dan fazla olan mikro elementlerin tanımlanabilmesi için kullanılır. 3. Prensip Elementler, 20±2°C’deki sıcaklıktaki su içinde çalkalanan gübrelerden ayrıştırılır. Not. Numune ampiriktir ve az ya da çok tam olabilir. 4. Reaktifleri 4.1 Sulandırılmış hidroklorik asit, yaklaşık olarak 6 M Bir hacim hidroklorik asit (HCl, d20 =1,18 g/ml) ve bir hacim su 5. Aletler 5.1 Dakikada 35-40 devirli çalkalama aleti Not. Eğer numune üzerinde borun da tayini amaçlanırsa, borosilikatlı cam ürünler kullanmayınız. Teflon ve silis bu ayrıştırmayı kaynatmak için kullanılabilir. Eğer cam kapların temizlenmesi için bor içeren deterjan kullanılırsa ürünleri çok iyi durulayınız. 6. Numunenin hazırlanması Metot 1’e bakınız. 7.Metot 8.1 7.1.Numunenin alınması Ürün içinde element olarak beyan edilen tenöre göre 1 ya da 2 g arasında bir miktar numune tartınız. Aşağıdaki tablo, en son kullanılacak olan bir solüsyon elde etmek için kullanılır ve uygun bir sulandırılma işleminden sonra her metot için uygun olan bir ölçü aralığı bulunur. Numuneler 1 mg yanılma payı ile tartılır.
Numuneyi 500 ml’lik bir karıştırma şişesine aktarınız. 8.2 7.2.Solüsyonun hazırlanması 400 ml su ekleyiniz. Dikkatlice kapatınız. Elle kuvvetlice sallayınız ki ürün iyice karışsın. Şişeyi karıştırıcının (5.1) üzerine koyunuz. Aleti 30 dakika süresince çalıştırınız. Hacmi su ile tamamlayınız. Karıştırınız. 8.3 7.3.Test Solüsyonun hazırlanması Hemen kuru ve temiz bir şişeye süzünüz. Şişeyi kapatınız. Süzmeden hemen sonra tayine geçiniz. Not. Eğer süzülen madde gittikçe bulanırsa, 7.1 ve 7.2’yi takip ederek yeniden süzünüz. Tam olarak ölçülmüş 5 ml hidroklorik asit (4.1) içeren ve daha önceden de kurutulmuş olan (W) hacimli, dereceli bir şişe üzerine süzünüz. Derece çizgisine yetişildiği zaman süzme işlemini durdurunuz. Karıştırınız. Bu şartlarda, sonuçların ifade edilmesinde görülen V değeri: V=Ve x W/ (W-5) Sonuçların ifade edilmesinde görülen sulandırma işlemleri bu V değeri üzerinde yapılır. 8.Tayin Her elementin tayini, bu elementlere özgü metotlara uygun olan numuneler üzerinden yapılacaktır. 10.5, 10.6, 10.7, 10.9 ve 10.10 sayılı metotlar şelatlı ya da kompleks halde bulunan elementleri tayin etmede kullanılamaz. Bu durumda, tayinden önce 10.3 metoda başvurmak gerekir. Atomik absorbsiyon spektrofotometri yöntemi ile yapılan tayinlerde (10.8, ve 10.11 sayılı metotlar) böyle bir işleme gerek kalmaz. METOT 10.3 GÜBRE NUMUNELERİNİN İÇİNDEN ORGANİK BİLEŞİKLERİN UZAKLAŞTIRILMASI
1. Amaç Bu metot, gübre numunelerinin içindeki organik bileşiklerin uzaklaştırılması için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I-E’de İz elementli Gübrelerde öngörüldüğü şekilde toplam veya suda eriyen elementi beyan edilen ve bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen numunelerinin ayrıştırmalarında kullanılır. Not: Az miktarda mevcut olan organik maddeler genellikle, atomik absorbsiyon yöntemi ile çalışan spektofotometri tanımlamalarını etkilemez. 3. Prensip Numunenin içinde mevcut olan organik bileşiklerin hidrojen peroksit tarafından oksitlenir. 4. Reaktifler 4.1. Sulandırılmış hidroklorik asit, yaklaşık olarak 6 M Bir hacim hidroklorik asit (d20 =1,18 g/ml) ve 20 hacim su 4.2 Hidrojen peroksit solüsyonu (% 30 H2O2, d20 : 1,11 g/ml); mikro elementler hariç 5. Aletler Ayarlanabilir ısılı elektrikli ısıtıcı 6. Metot 10.1 ya da 10.2 metodu ile elde edilen solüsyondan 25 ml alınız ve 100 ml’lik bir beher içine koyunuz. Eğer 10.2 metodu kullanıldı ise sulandırılmış hidroklorik asit (4.1) solüsyonundan 5 ml ekleyiniz. Daha sonra 5 ml hidrojen peroksit (4.2) ekleyiniz. Göstergeli bir kapak ile kapatınız. Yaklaşık olarak 1 saat boyunca soğuk ortamda oksidasyonun gerçekleştirilmesine izin veriniz daha sonra aşamalı olarak kaynama noktasına götürünüz ve yaklaşık olarak ½ saat kaynatınız. Eğer gerekli ise, ılık olan solüsyonun içine yeniden 5 ml hidrojen peroksit ekleyiniz ve organik bileşiklerin yıkımını takip ediniz ve fazla olan hidrojeni kaynama yöntemi ile uzaklaştırınız. Soğumaya bırakınız ve içeriği 50 ml’lik dereceli bir şişeye aktarınız. Hacmi su ile tamamlayınız. Karıştırınız. Eğer gerek görürseniz süzünüz. Örneklerin alımında ve ürünün mikro elementlerinin yüzdesinin hesaplanmasında yarı yarıya olan bu sulandırma göz önünde bulundurulur.
METOT 10.4 ATOMİK ABSORBSİYON SPEKTROFOTOMETRİ YÖNTEMİ İLE GÜBRE NUMUNELERİNDEKİ MİKRO ELEMENTLERİN TAYİNİ (GENEL METOT) 1.Amaç Bu metot, gübre numunelerinin içindeki demir ve çinko elementlerinin atomik absorbsiyon spektrofotometri yöntemi ile miktarının tayini için genel olarak bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I-E’de öngörüldüğü şekilde toplam veya suda eriyen demir ve çinko elementleri beyan edilen ve bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen numunelerde kullanılır. Değişik mikro elementlerin miktarının bu işlem moduna adaptasyonu, her elementin özel metotlarında belirtilmiştir. Not. Az miktarda mevcut olan organik maddeler genellikle, atomik absorbsiyon yöntemi ile çalışan spektofotometri tanımlamalarını etkilemez. 3. Prensip Numuneden istenmeyen kimyasal türleri uzaklaştırmak ya da azaltmak için yapılabilen işlemden sonra, numune, dalga uzunluğu tayini yapılacak elemente ayarlanmış olan spektrofotometrenin en uygun bölgesine cevap verebilecek konsantrasyonda sulandırılır. 4. Reaktifler 4.1.Sulandırılmış hidroklorik asit, yaklaşık olarak 6 M Bir hacim hidroklorik asit (d20 =1,18 g/ml) ve bir hacim su 4.2. Sulandırılmış hidroklorik asit, yaklaşık 0,5 M Bir hacim hidroklorik asit (d20 =1,18 g/ml) ve 20 hacim su 4.3.Lantan tuzu solüsyonu, litrede 10 g La. Bu reaktif demir ve çinko tayini için kullanılır. Aşağıdaki şekilde gerçekleştirilebilir: a)Hidroklorik asit içinde lantan oksit eritilmesi: 1 litrelik dereceli şişeye, 11,73 g lantanoksit (La2O3) süspansiyonu ve 150 ml su koyunuz, daha sonra 120 ml 6 M (4.1) hidroklorik asit ekleyiniz. Eriyinceye kadar bırakınız ve daha sonra 1 litreye su ile tamamlayınız. Karıştırınız. Bu solüsyon yaklaşık olarak 0,5 M hidroklorik asittir. b)Lantan klorürü, lantan sülfatı yada lantan nitratı,1 litrelik dereceli bir şişede, 26,7 g lantan klorür heptahidrat (LaCl3 7 H2O) ya da 31,2 g lantan nitrat heksahidrat (La(NO3)3 6H2O) ya da 26,2 g lantan sülfat nonahidrat (La2(SO4)3 9 H2O) 150 ml su içine katınız daha sonra 85 ml 6 M (4.1) hidroklorik asit ekleyiniz ve 1 litreye kadar su ile tamalayınız. Karıştırınız. Bu solüsyon yaklaşık olarak 0,5 M hidroklorik asittir. 4.4.Şahit solüsyonlar Hazırlanmaları için her mikro elemente has olan tayin metotları dikkate alınacaktır. 5. Aletler Tayini gerçekleştirilen elementlerin karakteristik çizgilerini gösterebilecek kaynaklarla donatılmış olan atomik absorbsiyon spektrofotometre. Rahat kullanımı için kimyacı, aleti yapan üreticinin kullanım şartlarına dikkat edecektir ve kullanımına alışık olması gerekir. Gereklilik halinde, kullanılmadan önce alet ince ayar yapılabilecek donanıma müsait olması gerekir (Örneğin Zn). Bir elemente has durumlarda aksi belirtilmediği sürece, kullanılan gazlar hava ve asetilendir. 6. Numunenin hazırlanması 6.1 Tayini yapılacak elementleri solüsyona koyunuz, 10.1 veya 10.2 ya, eğer uygunsa 10.3 metotlarına bakınız. 6.2 Numune solüsyonunun hazırlanması 10.1, 10.2 ya da 10.3 metotlarına göre hazırlanan örnekten bir parçayı su veya hidroklorik asit (4.1) ya da (4.2) ile öyle bir sulandırınız ki son haldeki solüsyonun konsantrasyonu kullanılan şahit numune serisine (7.2) yakın bir halde olsun ve hidroklorik asit konsantrasyonu en az 0,5 M olsun ama 2,5 M’yi de geçmesin. Bu işlem bir ya da birden fazla ardarda yapılan sulandırma işlemi gerektirebilir. Son haldeki solüsyonu elde etmek için numuneden sulandırılmış bir parça alarak 100 ml dereceli bir şişeye dökünüz. Bu parçanın hacmi (a) ml cinsindendir. Seçilen 10 ml lantan tuzu (4.3) solüsyonu ekleyiniz. Hacmi, 0,5 M hidroklorik asit (4.2) ile tamamlayınız ve karıştırınız. Bu solüsyon ölçüm için son halini almıştır. Sulandırma faktörü D olsun. 7.Metot 7.1. Boş solüsyonun hazırlanması Gübre numunesinin alımı hariç ayrıştırma işleminden itibaren bütün prosesi uygularak boş bir deneme solusyonu hazırlayınız. 7.2. Şahit solüsyonların hazırlaması Her mikro element için tarif edilen metoda göre 100 ml dereceli şişede hazırlanan çalışma numunesinden yola çıkarak, aletin optimum dozaj çalışma bölgesine uygun olan en az 5 yükselme eğiliminde şahit konsantrasyon solüsyonu alınır. Aksi takdirde deneme için sulandırılmış (6.2) olan solüsyona mümkün olduğu kadar yakın konsantrasyonda hidroklorik asit ile sulandırınız. Kobalt, demir, manganez, çinko tayini için 6.2’de kullanılan lantan tuzundan (4.3) 10 ml katınız. Hacmi 0,5 M hidroklorik asit (4.2) solüsyonu ile tamamlayınız ve karıştırınız. 7.3. Ölçümler Spektrofotometreyi (5) ölçümler için hazırlayınız ve dalga uzunluğunu tayini yapılan elemente has metotta belirtildiği gibi ayarlayınız. Şahit numuneyi (7.2), deneme numunesini (6.2) ve boş solüsyonu (7.1) üç aşamalı olarak, her püskürtmeden sonra aletin saf su ile yıkandığına dikkat ederek püskürtünüz ve sonuçları not ediniz. Şahit numunelerden (7.2) her biri için spektrofotometre tarafından verilen sonuçların ortalamasın not ederek şahit eğrisini çiziniz ve apsiste tayini yapılan her elemente denk gelen konsantrasyonları ml’ye mg olarak ifade ediniz. Bu eğriden yola çıkarak, deneme numuneleri (6.2) ve boş deneme (7.1) ile tayini yapılan elementlerin konsantrasyonlarını belirleyiniz, bu konsantrasyonlar (Xs) ve (Xb) olarak not edilecektir ve ml’ye mg olarak ifade edilecektir. 8. Sonuçların ifade edilmesi Gübre elementi (E) yüzdesi eşittir : Gübre % E = [(Xs-Xb) x V x D] / (M x 104) Eğer kullanılan metot (10.3) ise : Gübre % E = [(Xs P Xb) x V x 2D] / (M x 104) Ya da E ; yüzde olarak ifade edilen gübre tayin miktarı Xs ; mg/ml olarak ifade edilen deneme solüsyonu (6.2) konsantrasyonu Xb ; mg/ml olarak ifade edilen boş deneme solüsyonu (7.1) konsantrasyonu V ; ml olarak ifade edilen ve 10.1 ya da 10.2 yöntemi ile elde edilen numune hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 10.1 ya da 10.2 yöntemi ile elde edilen numune kütlesi D ; sulandırma faktörü hesabı Eğer (a1) (a2) (a3)......(ai) ve (a) birer parça ise ve (V1) (V2) (V3)....(Vi) ve (100) ml olarak ifade edilen ve söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) x (V3/a3) x.x.x.x.x (Vi/ai) x (100/a) METOT 10.5 ASİDİMETRİK TİTRASYON METODU İLE GÜBRE NUMUNELERİNDEN BOR TAYİNİ 1.Amaç Bu metot, gübre numunelerinin içindeki bor tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I-E’de öngörüldüğü şekilde toplam veya suda eriyen (bor) elementi beyan edilen ve bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Borat iyonu mannitol ile birlikte bir mannitoborik kompleksini aşağıdaki reaksiyona göre oluşturur: C6H8(OH)6+H3BO3-C6H15O8B+H2O Kompleks sodyum hidroksit solüsyonu ile 6,3 pH’ya kadar titre edilir. 4. Reaktifler 4.1. Metil kırmızısı ayıraç solüsyonu 100 ml dereceli bir şişeye 0,1 g metil kırmızısını (C15H15N302) % 95’lik 50 ml etanol içinde eritiniz. 100 ml’ye dek su ile tamamlayınız. Karıştırınız. 4.2.Sulandırılmış klorhidrik asit solüsyonu, yaklaşık olarak 0,5 M 1 hacim hidroklorik asit (HCL, d20 : 1,18 g/ml) ve 20 hacim su karıştırınız. 4.3.Sodyum hidroksit solüsyonu, yaklaşık olarak 0,5 M. Karbondioksitsiz olmak zorundadır. 800 ml kaynamış su içeren 1 litre dereceli bir şişeye, tabet halde bulunan 20 g sodyum hidroksit (NaOH) sulandırınız. Solüsyon soğuduğunda, 1000 ml’ye kaynamış su ile tamamlayınız ve karıştırınız. 4.4. Standart sodyum hidroksit solüsyonu, yaklaşık olarak 0,025 M. Karbondioksitsiz olmak zorundadır. Yaklaşık olarak 0,5 m sodyum hidroksit solüsyonunu (4.3) kaynamış su ile 20 kez sulandırınız ve karıştırınız. Bor (B) değeri tayin dilecektir (paragraf 9) 4.5. 100 mg/ml Bor (B) şahit solüsyonu 1 000 ml dereceli bir şişeye, 0,1 mg yanılma payı ile tartılan 0,5719 g borik asidi (H3Bo3) su ile eritiniz. Hacmi su ile tamamlayınız ve karıştırınız. Plastik bir şişeye aktarınız ve soğutucuda bekletiniz. 4.6. Pudra halde D-Mannitol (C6H14O6) 4.7 . Sodyum klorür (NaCl) 5. Aletler 5.1. Cam elektrotlu pH-metre 5.2. mıknatıslı karıştırıcı 5.3.Teflon kenarlı 400 ml’lik beher. 6. Numunenin hazırlanması 6.1. Borun solüsyon haline getirilmesi, 10.1 veya 10.2 ya da 10.3 metotlarına bakınız. 7. Metot 7.1.Deneme Numuneden (6.1) 2 ile 4 mg bor (B) içeren bir (a) parça alınız ve 400 ml’lik (5.3) bir behere boşaltınız. 150 ml su ekleyiniz. Renkli (4.1) endikatör solüsyonundan birkaç damla ekleyiniz. Eğer belirleme işlemi 10.2 metodu ile yapılmış ise, renk endikatörü renk değiştirene kadar 0,5 m (4.2) hidroklorik asit ekleyerek asitleştiriniz ve fazladan 0,5 ml 0,5 M (4.2) hidroklorik asit ekleyiniz. Daha sonra 3 g sodyum klorürü (4.7) ekleyiniz, karbon dioksiti uzaklaştırmak için kanatınız. Soğutmaya bırakınız. Beheri mıknatıslı karıştırıcının (5.2) üzerine koyunuz ve daha önceden işaretlenmiş olan pH metre (5.1) elektrotlarını uzatınız. Önce 0,5 M sodyum hidroksit ile daha sonra da 0,025 M solüsyonu ile pH’yi tam olarak 6,3’e düzenleyiniz. 20 g D-mannitol (4.6) ekleyiniz, tam olarak eritiniz ve karıştırınız.pH 6,3’e kadar (en az 1 dakika durağan olacak şekilde) 0,025 M (4.4) sodyum hidroksit solüsyonu ile titre ediniz. Gerekli olan hacim X1 olsun 8. Boş deneme Gübre hariç, solüsyon haline getirildiğinden itibaren aynı şartlarda boş bir deneme gerçekleştiriniz. Gerekli hacim X0 olsun. 9. Sodyum hidroksit solüsyonunun (4.4) bor (B) değeri. Bir pipet yardımı ile şahit numuneden (4.5) 20 ml (2,0 mg Bor olsun) alınız ve 400 ml’lik bir behere boşaltınız, birkaç damla renkli endikatör (4.1) ekleyiniz. Renk endikatörü solüsyonu (4.1) renk değiştirene kadar sodyum klorür (4.7) ve hidroklorik asit solüsyonundan (4.2) 3 g ekleyiniz. Hacmi 150 ml’ye dek tamamlayınız ve karbon dioksiti uzaklaştırmak için kaynatınız. Soğumaya bırakınız. Beheri mıknatıslı karıştırıcının (5.2) üzerine koyunuz ve pH metre (5.1) elektrotlarını uzatınız. Önce 0,5 M sodyum hidroksit ile daha sonra da 0,025 M solüsyonu ile pH’yi tam olarak 6,3’e düzenleyiniz. 20 g D-mannitol (4.6) ekleyiniz, tam olarak eritiniz ve karıştırınız.pH 6,3’e kadar (en az 1 dakika durağan olacak şekilde) 0,025 M (4.4) sodyum hidroksit solüsyonu ile titre ediniz. Gerekli olan hacim V1 olsun Şahit numuneye 20 ml su katarak aynı şekilde boş bir deneme gerçekleştiriniz. Gerekli hacim V0 olsun. StandartNaOH (4.4) solüsyondaki (F)’nin (B) bor denkliği aşağıdaki şekildedir: F (mg/ml) = 2/(V1 -V0) Tam olarak 0,025 M sodyum hidroksit solüsyonunun 1 ml’si 0,27025 mg bora (B) denktir. 10. Sonuçların ifade edilmesi Gübredeki bor (B) yüzdesi: B (%) = ((X1 - X0) x F x V)/ 10 x a x M B gübredeki bor yüzdesi X1 ; ml olarak ifade edilen ve denemede kullanılacak olan 0,025 M sodyum hidroksiti solüsyonunun (4.4) hacmi X0 ; ml olarak ifade edilen ve boş denemede kullanılan 0,025 M (4.4) sodyum hidroksit solüsyonu hacmi F ; mg/ml olarak ifade edilen 0,025 M (4.4) sodyum hidroksit solüsyonundaki bor (B) değeri V ; ml olarak ifade edilen 10.1 ya da 10.2 yöntemi ile elde edilen numune hacmi a ; ml olarak ifade edilen ve numuneden (6.1) alınan parçanın (7.1) temsili hacmi M ; gr. olarak ifade edilen ve 10.1 ya da 10.2 yöntemi tarafından kullanılacak olan numunenin ağırlığı. METOT 10.6 GÜBRE NUMUNELERİNDEN KOBALT TAYİNİ 1-NITROSO– 2-NAPHTOL’lu GRAVİMETRİK METOT 1.Amaç Bu metot, gübre numunelerinin içindeki kobalt tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I-E’de öngörüldüğü şekilde toplam veya suda eriyen (kobalt) elementi beyan edilen ve bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Kobalt III 1-nitroso-2-naphtol ile beraber kırmızı bir Co(C10H6ONO)3, 2H2O çökeltisi verir. Numune uygun şekilde işlem gördükten sonra mevcut olan kobalt, kobalt III haline gelecek şekilde oksitlenir, daha sonra 1-nitroso-2-naphtol solüsyonu ile asetik ortamda çökeltilir. Süzüldükten sonra, çökelti yıkanır ve sabit ağırlıklarda kurutulur, daha sonra Co(C10H6ONO)3, 2H2O halde tartılır. 4. Reaktifler 4.1 % 30’luk Hidrojen peroksit solüsyonu (H2O2,d20 = 1,11 g/ml) 4.2 Yaklaşık 2 M sodyum hidroksit solüsyonu. Tablet haldeki 8 g sodyum hidroksit 100 ml su ile eritiniz. 4.3 yaklaşık 6 M sulandırılmış hidroklorik asit solüsyonu. Bir hacim hidroklorik asit (d20 =1,18 g/ml) ile bir hacim su karıştırınız. 4.4 % 99,7 asetik asit (CH3CO2H, d20 =1,05 g/ml) 4.5.Yaklaşık 6 M asetik asit solüsyonu (1:2). Bir hacim asetik asit (4.4) ile iki hacim su karıştırınız. 4.6.Asetik asit içinde 1-nitroso-2-naphtol solüsyonu. Bir beher içine 4 g 1-nitroso-2-naphtol asetik asit içinde eritiniz. Bir beher içine 4 g 1-nitroso-2-naphtol 100 ml asetik asit (4.4) içinde eritiniz. 100 ml ılık su ekleyiniz. Karıştırınız. Süzünüz. Elde edilen solüsyon hemen kullanılmalıdır. 5. Aletler 5.1. Gözenekliliği 4 olan, 30 ya da 50 ml sığalı P 16/ISO 4793 süzme potası. 5.2 130 ± 2 °C dereceye ayarlanabilir kurutma fırını. 6. Numunenin hazırlanması 6.1 Kobaltın solüsyon haline getirilmesi, 10.1 veya 10.2 metotlarına bakınız. 6.2 Numune solüsyonunun hazırlanması 20 mg Co’tan fazla içermeyen bir parça numuneyi 400 ml’lik bir behere koyunuz. Eğer numune 10.2 yöntemi ile elde edilirse 5 damla hidroklorik asit (4.3) ile asitlendiriniz. Yaklaşık olarak 10 ml hidrojen peroksit solüsyonu (4.1) ekleyiniz. 15 dakika boyunca oksidanın soğukta işlemesine izin veriniz ve yaklaşık olarak 100 ml’ye kadar su ile tamlayınız. Beher üzerine göstergeli bir kapak koyunuz. Yaklaşık olarak 10 dakika kaynatınız. Soğumaya bırakınız. Alkalin ortamda, sodyum hidroksit solüsyonunu (4.2) siyah kobalt hidroksiti çökelinceye kadar damla damla ekleyiniz. 7. Metot 10 ml asetik asit (4.4) ekleyiniz ve su ile birlikte solüsyonu yaklaşık olarak 200 ml’ye tamamlayınız. Kaynamaya başlayıncaya kadar ısıtınız. Bürete, sürekli karıştırarak damla damla 20 ml 1-nitroso-2-naphtol (4.6) solüsyonu katınız. Güçlü bir karıştırma ile bitiriniz ki çökelti pıhtılaşsın. Daha önce dara edilmiş ve potadan taşmamasına dikkat ederek süzgeçli bir pota üzerine (5.1) süzünüz. Bunun için, süzme işlemi süresince çökeltinin üzerine solüsyon akıtmaya dikkat ediniz. Çökeltiyi uzaklaştırmak için beheri sulandırılmış asetik asit (4.5) ile yıkayınız, daha sonra süzgeç üzerinde çökeltiyi sulandırılmış asetik asit (4.5) ile yıkayınız; sonra da 3 kez sıcak su ile yıkayınız. Etüv içinde (5.2) 130 ± 2° C’de sabit bir ağırlığa kadar kurutunuz 8. Sonuçların ifade edilmesi Co(C10H6ONO)3, 2H2O çökeltisinden 1 mg 0,096381 mg Co’ya denktir. Gübredeki kobalt (Co) yüzdesi eşittir: Co % = X x 0,0096381 x (V x D/ a x M) Burada; X ; mg olarak ifade edilen çökelti kütlesi. V ; ml olarak ifade edilen ve 10.1 ya da 10.2 yöntemi ile elde edilen numune hacmi a ; ml olarak ifade edilen ve son sulandırmadan sonra alınan numune parçası D ; bu parçanın sulandırma faktörü M ; gram olarak ifade edilen numune kütlesi METOT 10.7 TİTRİMETRİK METOT İLE GÜBRE NUMUNELERİNDEN BAKIR TAYİNİ 1.Amaç Bu metot, gübre numunelerinin içindeki bakır tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde toplam (bakır) veya suda eriyen (bakır) elementi beyan edilen ve bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Bakırımsı iyonlar asitli ortamda potasyum iyodür ile azaltılır. 2 Cu ++ + 4I– → 2CuI + I2 Bu şekilde serbest kalan iyot, Standart sodyum tiyosülfat şahit solüsyonu ile titre edilir. I2 + 2Na2S2O3→2NaI+Na2S4O6 4. Reaktifleri 4.1. Nitrik asit (HNO3, d20=1,40 g/ml) 4.2. Üre [(NH2)2 C=0] 4.3. % 10 (w/v) amonyum biflorürlü (NH4HF2) sulu solüsyon. Solüsyonu plastik bir kapta saklayınız. 4.4. Amonyum hidroksit solüsyonu( 1 + 1) Bir hacim amonyak (NH4OH, d20 :0,9 g/ml) ve bir hacim suyu karıştırınız. 4.5. sodyum tiyosülfat standart solüsyonu. 1000 ml dereceli bir şişeye 7,812 g sodyum pentahidrat thiosülfat (Na2S2O3, 5H2O) su ile eritiniz. Bu solüsyon bu solüsyon öyle bir hazırlanmalı ki, 1 ml = 2 mg Cu olmalı. Sabitleştirmek için birkaç damla kloroform damlatınız. Solüsyon cam bir kapta ve ışıktan uzakta saklanmak zorundadır. 4.6. Potasyum iyodür (KI) 4.7.potasyum tiosinat (KSCN) solüsyonu (% 25 (w/v)). Bu solüsyonu plastik bir kapta saklayınız. 4.8. 2,5 g Nişastayı. 600 ml’lik bir behere koyunuz. Yaklaşık olarak 500 ml su ekleyiniz. Karıştırarak kaynatınız. Oda sıcaklığında soğutunuz. Solüsyon çok uzun zaman bekletilmemelidir. 10 mg civa klorür ilave edilerek biraz daha korunabilir. 5. Numunenin hazırlanması 5.1 Bakırın solüsyon haline getirilmesi, 10.1 veya 10.2 metotlarına bakınız. 6. Metot 6.1 Deneme solüsyonunun hazırlanması 500 ml’lik bir erlen 20 ile 40 mg Cu’dan az içermeyen bir parça solüsyon koyunuz. Kısa bir kaynama ile olası fazla oksijeni uzaklaştırınız. Hacme yaklaşık olarak 100 ml su katınız. 5 ml nitrik asit (4.1) ekleyiniz ve yaklaşık olarak yarım dakika kaynatınız. Erleni ısıtıcı aletten çıkarınız ve 3 g üre (4.2) katınız, tekrar kaynatmaya koyunuz ve yaklaşık olarak yarım dakika kaynatınız. Isıtıcıdan çıkarınız ve 200 ml soğuk su ekleyiniz. Aksi takdirde erleni oda sıcaklığında soğutunuz. Yavaş yavaş biraz amonyak (4.4) mavi bir solüsyon elde edilene kadar ekleyiniz ve daha sonra fazladan 1 ml daha koyunuz. 50 ml amonyum biflorür solüsyonu (4.3) ekleyiniz ve karıştırınız. 10 g potasyum iyodür (4.6) alınız ve solüsyona ekleyiniz. 6.2 Solüsyonun titrasyonu Erleni mıknatıslı karıştırıcının üzerine koyunuz. Ucu erlenin içine koyunuz ve karıştırıcının hızını isteğinize göre ayarlayınız. Solüsyondan serbest kalan kahverengi iyot renginin yoğunluğu azalana kadar bir büret yardımım ile sodyum thiosülfat şahit numunesini (4.5) dökünüz. Amidon solüsyonundan 10 ml ekleyiniz (4.8) Kırmızı renk neredeyse kaybolana kadar sodyum thiosülfat (4.5) solüsyonu ile titre etmeye devam ediniz. 20 ml potasyum tiosianat solüsyonu (4.7) ekleyiniz ve mavi-mor renk tamamen kaybolana kadar titrasyon işlemine devam ediniz. Kullanılan tiosülfat solüsyon hacmini kayıt ediniz. 7. Sonuçların ifade edilmesi 1 ml standart sodyum tiosülfat solüsyonu (4.5) 2 mg Cu’a denktir. Gübredeki bakır yüzdesi eşittir: Cu % = X x(V/ a x M x 5) X ; ml olarak ifade edilen ve kullanılan sodyum tiosülfat solüsyonunun hacmi V ; ml olarak ifade edilen ve 10.1 ya da 10.2 yöntemi ile elde edilen numune hacmi a ; ml olarak ifade edilen ve kullanılan numune parçası hacmi M ; gram olarak ifade edilen ve 10.1 ya da 10.2 yöntemi ile elde edilen numune kütlesi
METOT 10.8 GÜBRE NUMUNELERİNDEN DEMİR TAYİNİ ATOMİK ABSORBSİYON SPEKTROFOTOMETRELİ METOT 1.Amaç Bu metot, gübre numunelerinin içindeki demir tayini için bir yöntem belirlemektedir. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde beyan edilen toplam veya suda çözünür demir elementi ve bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Numunelere uygun sulandırma işleminden sonra, demir atomik absorbsiyon spektrofotometri ile tayin edilir. 4. Reaktifleri 4.1 yaklaşık 6 M hidroklorik asit solüsyonu, 10.4 madde 4.1’e bakınız 4.2 yaklaşık 0,5 M hidroklorik asit solüsyonu, 10.4 madde 4.2’e bakınız 4.3 hidrojen peroksit solüsyonu (% 30’luk H2O2, d20 =1,11 g/ml), mikro elementler hariç 4.4 Lantan tuzu solüsyonu (litrede 10 g La), 10.4 madde 4.3’e bakınız 4.5 Demir şahit numunesi 4.5.1. Demir ana solüsyonu ,(1000 µg/ml) 500 ml’lik bir beher içine 0,1 mg yanılma payı ile tartılan 1 g saf demiri 200 ml 6 M hidroklorik asit (4.1) içinde eritiniz ve buraya 15 ml hidrojen peroksidi (4.3) ekleyiniz. Tamamen eriyene dek ısıtıcılı plaka üzerinde ısıtınız. İçeriği 1000 ml’lik bir şişeye aktararak soğumaya bırakınız. Hacmi su ile tamamlayınız. Karıştırınız. 4.5.2.Demir çalışma solüsyonu (1000 mg/ml) 200 ml dereceli bir şişeye 20 ml demir ana solüsyonundan (4.5.1) koyunuz. 200 ml’ye dek 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. 5. Aletler 10.4 metot, 5 maddede belirtilen atomik absorbsiyon spektrofotometre. Alet, demire özgü (248,3 nm) iz kaynakları ile donatılmış olmalı. 6. Numunenin hazırlanması 6.1 Demirin solüsyon haline getirilmesi, 10.1 veya 10.2 ya da 10.3 metotlarına bakınız. 6.2 numune solüsyonunun hazırlanması, 10.4 metodunun 6.2 maddesine bakınız. Numune solüsyonu % 10 (V/V) lantan tuzu içermek zorundadır. 7. Metot 7.1.Boş solüsyonun hazırlanması 10.4 metodunun 7.1 maddesine bakınız. Boş deneme solüsyonu, 6.2’de kullanılan % 10 (v/v) lantan tuzu içermek zorundadır. 7.2 Şahit numunenin hazırlaması, 10.4 metot, 7.2. maddeye bakınız. 0 ile 10 mg/ml demir arasındaki en uygun dozaj aralığı için, 100 ml dereceli bir sıra şişelere, 0, 2, 4, 6, 8 ve 10 ml çalışma solüsyonundan (4.5.2) koyunuz. Gerekli olursa, numune solüsyonuna mümkün olduğunca yakın konsantrasyona sahip olması için hidroklorik asit katınız. 6.2’de kullanılan lantan tuzu solüsyonundan 10 ml ekleyiniz. Hacmi 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. Bu solüsyonlar 0, 2, 4, 6, 8 ve 10 mg/ml demir içerir. 7.3 Ölçümler 10.4 metodunun 7.3 maddesine bakınız. 248,3 nm dalga uzunluğunda ölçüm yapmak için spektrofotometreyi (5) hazırlayınız. 8. Sonuçların ifade edilmesi 10.4 metot, 8 maddeye bakınız. Gübredeki demir yüzdesi eşittir: Fe % = [(Xs - Xb) x V x D] / (M x 104 ) Eğer kullanılan metot (10.3) ise : Fe % = [(Xs - Xb) x V x 2D] / (M x 104) Ya da Fe ; gübrede yüzde olarak ifade edilen demir miktarı Xs ; mg/ml olarak ifade edilen deneme solüsyonu (6.2) solüsyonu konsantrasyonu Xb ; mg/ml olarak ifade edilen boş deneme solüsyonu (7.1) konsantrasyonu V ; ml olarak ifade edilen ve 10.1 ya da 10.2 yöntemi ile elde edilen numune hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 10.1 ya da 10.2 yöntemi ile elde edilen numune kütlesi D ; sulandırma faktörü hesabı
Eğer (a1) (a2) (a3)........ (ai) ve (a) ard arda gelen birer parça ise ve (V1) (V2) (V3) .... (Vi) ve (100) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) x (V3/a3)x.x.x.x.x.x(Vi/ai) x (100/a) METOT 10.9 GÜBRE NUMUNELERİNDEN MANGANEZ TAYİNİ PERMANGANAT TİTRASYONLU METOT 1.Amaç Bu metot, gübre numunelerinin içindeki manganez tayini için bir yöntem belirlemektedir. 2.Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde beyan edilen toplam veya suda çözünür manganın analizlerinde bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen gübre numuneleri kullanılır. 3. Prensip Eğer numunede klorür iyonları mevcut ise bunlar, numuneye sülfürik asit katarak ve kaynatılarak uzaklaştırılırlar. Manganez, nitrik asit ortamda bismutat sodyum tarafından oksitlenir. Oluşan permanganat fazladan konan demir sülfat tarafından azaltılır. Bu fazlalık potasyum permanganat solüsyonu tarafından titre edilir. 4. Reaktifler 4.1 konsantre sülfürik asit (H2SO4,d20 : 1,84 g/ml) 4.2 yaklaşık 9 M sülfürik asit. Bir hacim konsantre sülfürik asit (4.1) ile bir hacim suyu dikkatle karıştırınız. 4.3 3 hacim nitrik asit (HNO3, d20 :1,40 g/ml) ve 4 hacim su karıştırınız. 4.4 0,3 M nitrik asit. 6 M nitrik asitten 1 hacim ve 19 hacim su karıştırınız. 4.5 % 85 Sodyum bismutat (NaBiO3) 4.6 Kieselguhr 4.7 15 M ortofosforik asit (H3PO4, d20 :1,71 g/ml) 4.8 0,15 M Demir sülfat solüsyonu. 1 000 ml dereceli bir şişede 41,6 g demir sülfat heptahidrat eritiniz (FeSO4, 7H2O). Konsantre 25 ml sülfürik asit (4.1) ve 25 ml fosforik asit (4.7) katınız. 1000 ml’ye su ile tamamlayınız. Karıştırınız. 4.9 0,020 M potasyum permanganat solüsyonu. 0,1 mg yanılma payı ile 3,160 g potasyum permanganat (KMnO4) tartınız. Eritiniz ve 1000 ml’ye kadar su ile tamamlayınız. 4.10 0,1 M gümüş nitrat solüsyonu. 1,7 g gümüş nitratı (AgNO3) eritiniz ve 100 ml’ye kadar su ile tamlayınız. 5. Aletler 5.1 Gözenekliliği 4 olan, 50 ml sığalı P 16/ISO 4793 süzme potası 500 ml’lik bir süzme aracının üzerine konmuştur. 5.2 Mıknatıslı karıştırıcı. 6. Numunenin hazırlanması 6.1 Manganın solüsyon haline getirilmesi 10.1 veya 10.2 metotlarına bakınız, eğer klorür ionlarının olup olmadığı bilinmiyorsa bir damla nitrat solüsyonu ile bir test yapınız(4.10) 6.2 Klorür iyonların eksikliğinde 400 ml’lik bir behere 10 ile 20 mg manganez içeren bir parça numune koyunuz. İster buharlama ister su katarak yaklaşık olarak 25 ml’lik bir hacme getiriniz. 2 ml konsantre sülfürik asit (4.1) kayınız. 6.3 Klorür iyonları mevcut ise, aşağıdaki şekilde uzaklaştırmak gerekir. Yüksek şekilli bir behere 10 ile 20 mg manganez içeren bir parça numune koyunuz. 5 ml 9 M sülfürik asit (4.2) katınız. Bir ocak eteği altında, ısıtıcılı plaka üzerinde bolca beyaz dumanlar yükselene kadar kaynatınız. Hacim 2 ml’ye inene kadar kaynatmaya devam ediniz (beherin altında ince şurupumsu bir sıvı katmanı oluşur). Beheri oda sıcaklığında bırakınız. Dikkatle 25 ml su ekleyiniz ve yeniden bir damla gümüş nitratı solüsyonu (4.10) ile klorürlerin eksikliğini kontrol ediniz. Eğer klorür kalırsa, 5 ml 9 M sülfürik asit (4.2) ekledikten sonra işlemi yeniden tekrarlayınız. 7. Metot Tayin edilecek olan solüsyon içeren 400 ml’lik bir behere, 25 ml 6M nitrik asit (4.3) ve 2,5 g sodyum bismutat (4.5) katınız. Mıknatıslı karıştırıcı (5.2) üzerinde 3 dakika boyunca hızlı karıştırınız. 50 ml 0,3 M nitrik asit (4.4) katarak yeniden karıştırınız. Daha önce dibi kieselguhr (4.6) ile kaplanmış olan bir potaya (5.1) havasız ortamda süzünüz. Renksiz bir süzme elde edene kadar potayı birkaç kez 0,3 M nitrik asit (4.4) ile yıkayınız. Süzüleni ve yıkama solüsyonunu 500 ml’lik bir behere aktarınız. Karıştırınız ve 0,15 M demirli sülfat solüsyonundan (4,8) 25 ml ekleyiniz. Eğer süzülen madde, demirli sülfat eklendikten sonra sarı bir renk alırsa, 3 ml 15 M ortofosforik asit (4.7) ekleyiniz. Büret yardımı ile demirli sülfat fazlalığını 0,05 M permanganat potasyum (4.9) yardımı ile 1 dakika boyunca sabit bir pembe renk elde edene kadar titre ediniz. Numune alımı hariç aynı şartlarda boş bir tayin gerçekleştiriniz. Not. : okside olan solüsyon kauçuk ile temas etmemeli. 8. Sonuçların ifade edilmesi 1 ml 0,02 M potasyum permanganat solüsyonu 1,099 mg manganeze (Mn) eşittir. Gübredeki manganez yüzdesi eşittir: Mn % = (Xb - Xs) x 0,1099 x (V/a x M) Xb ; ml olarak ifade edilen ve boş denemede kullanılan permanganat hacmi Xs ; ml olarak ifade edilen ve numune alımında kullanılan permanganat hacmi V ; ml olarak ifade edilen ve 10.1 ya da 10.2 yöntemi ile elde edilen solüsyon hacmi a ; ml olarak ifade edilen ve numuneden alınan parçanın hacmi M ; gram olarak ifade edilen numune kütlesi
METOT 10.10 GÜBRE NUMUNELERİNDEN MOLİBDEN TAYİNİ 8-HİDROKSİKİNOLEİN ARACILIĞI İLE GRAVİMETRİK METOT 1.Amaç Bu metot, gübre numunelerinin içindeki molibden tayini için bir yöntem belirlemektedir. 2.Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte öngörüldüğü şekilde molibden elementi beyan edilen ve bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen gübre numunelerinin ayrıştırmalarında kullanılır. 3. Prensip Molibden tayini, belirtilen şartlar altında çökeltilen molibden oksinat ile gerçekleştirilir. 4. Reaktifler 4.1 yaklaşık 1 M sülfürik asit solüsyonu. 800 ml su içeren 1 litre dereceli bir şişeye dikkatle 55 ml sülfürik asit (H2O4, ñ = 1,84 g/ml) ekleyiniz. Karıştırınız. Soğuduktan sonra 1 litreye tamamlayınız. Karıştırınız. 4.2. Sulandırılmış amonyak solüsyonu (1:3). Bir hacim konsantre amonyak (NH4OH, ñ=0,9 g/ml) ile 3 hacim su karıştırınız. 4.3. Sulandırılmış asetik asit solüsyon (1:3). Bir hacim % 99,7 konsantre asetik asit (CH3COOH, d20=1,049 g/ml) ile 3 hacim suyu karıştırınız. 4.4. İki sodyumlu etilen diamin tetra asetik asit(EDTA) 100 ml dereceli bir şişeye 5 g Na2 EDTA su içinde eritiniz. Derece çizgisine kadar getiriniz ve karıştırınız. 4.5. Tampon solüsyonu. 100 ml dereceli bir şişeye 15 ml konsantre asetik asit ile 30 g amonyum asetatı su ile eritiniz. 100 ml’ye tamamlayınız.. 4.6. 7 – hidroksikinolein (oksin) solüsyonu. 100 ml dereceli bir şişeye 3 g hidroksikinoleini 5 ml konsantre asetik asit içinde eritiniz. 80 ml su ekleyiniz. Solüsyon bulanana kadar damla damla amonyak solüsyonu (4.2) ekleyiniz, daha sonra solüsyonberrak hale gelene kadar asetik asit (4.3) katınız. 100 ml’ye kadar su ile tamamlayınız. 5. Aletler 5.1 Gözenekliliği 4 olan, 30 ml sığalı P 16/ISO 4793 süzme potası. 5.2 Cam elektrotlu pH-metre 5.3 130 – 135 °C dereceye ayarlanabilir kurutma fırını. 6. Numunenin hazırlanması 6.1 Molibden solüsyonunun hazırlanması, 10.1 veya 10.2 metotlarına bakınız. 7. Metot 7.1.Deneme solüsyonunun hazırlanması 25 25-100 mg Mo içerecek şekilde numuneden 250 ml’lik dereceli bir behere bir parça koyunuz. 50 ml’ye kadar su ile tamamlayınız. Bu solüsyonu, damla damla sülfürik asit (4.1) solüsyonu ekleyerek 5’lik bir pH’ye ayarlayın. 15 ml EDTA solüsyonu (4.4), daha sonra 5 ml tampon solüsyonunu ekleyiniz (4.5). Yaklaşık olarak 80 ml’ye kadar su ile tamamlayınız. 7.2 Çökeltinin elde edilmesi ve yıkanması. Çökeltinin elde edilmesi. Solüsyonu hafifçe ısıtınız. Sürekli karıştırarak oksin solüsyonu ekleyiniz (4.6). Rüsup oluşmamaya başlayıncaya kadar çökeltiye devam ediniz. Üstte kalan su solüsyon hafif sarıya dönene kadar reaktif ekleyiniz. 20 ml2lik bir miktar normal olarak yetmesi gerekir. Çökeltiyi 2 ile 3 dakika arası hafifçe ısıtmaya devam ediniz. Süzme ve yıkama. Pota yardımı ile süzünüz (5.1). 20 ml’lik sıcak su hacimleri ile birçok kez durulayınız. Durulama suyu aşamalı olarak şeffaf hale gelecektir, bu durum ise oksin yokluğunu gösterir. 7.3 çökeltinin tartılması. Çökeltiyi 130-135 °C’de sabit ağılığa kadar kurutunuz (en azından 1 saat). Bir kurutma aletinde soğumaya bırakınız daha sonra tartınız. 8. Sonuçların ifade edilmesi 1 mg molibdenil oksinat MoO2 (C9H6ON)2, 0,2305 mg Mo’ya denktir. Gübredeki molibden yüzdesi eşittir: Mo % = X x 0,02305 x V x D/(a x M) X ; mg olarak ifade edilen molibdenil oksinat çökeltisi kütlesi V ; ml olarak ifade edilen ve 10.1 ya da 10.2 yöntemi ile elde edilen numune solüsyonu hacmi. a ; ml olarak ifade edilen ve son sulandırmadan alınan parça hacmi. D ; bu parçanın sulandırma işleminde kullanılan sulandırma faktörüdür. M ; gram olarak ifade numune kütlesi
METOT 10.11 ATOMİK ABSORBSİYON SPEKTROFOTOMETRİ YÖNTEMİ İLE GÜBRE NUMUNELERİNDEKİ ÇİNKO TAYİNİ 1.Amaç Bu metot, gübre numunelerinin içindeki çinkonun atomik absorbsiyon spektrofotometri yöntemi ile tayinini amaçlar. 2. Uygulama alanı Bu metot, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik EK I-E’de öngörüldüğü şekilde beyan edilen toplam veya suda çözünür çinkonun bu Yönetmeliğin 10.1 ve 10.2 metotları ile elde edilen gübre numunelerinin analizlerinde kullanılır. 3. Prensip Numunelere uygun sulandırma işleminden sonra çinko atomik absorbsiyon spektrofotometri ile tayin edilir. 4. Reaktifleri 4.1 yaklaşık 6 M hidroklorik asit solüsyonu, 10.4 madde 4.1’e bakınız 4.2 yaklaşık 0,5 M hidroklorik asit solüsyonu. 10.4 madde 4.2’e bakınız 4.3 Lantan tuzu solüsyonu, litrede 10 g La, 10.4 madde 4.3’e bakınız 4.4 Çinko şahit numunesi 4.4.1. 1000 mg/ml çinko ana solüsyonu 1000 ml’lik dereceli bir şişe içine 0,1 mg yanılma payı ile tartılan 1 g çinkoyu 25 ml 6 M hidroklorik asit (4.1) içinde eritiniz. Tamamen eridikten sonra 1000 ml’ye dek su ile tamamlayınız. Karıştırınız. 4.4.2 100 mg/ml çinko çalışma solüsyonu 200 ml dereceli bir şişeye 20 ml çinko ana solüsyonunu (4.4.1) 0,5 M hidroklorik asit (4.2) ile sulandırınız. 200 ml’ye kadar 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. 5. Aletler 10.4 metot, 5’inci maddede belirtilen atomik absorbsiyon spektrofotometre. Alet çinkoya özgü (213,8 nm) iz kaynakları ile donatılmış olmalı. Alet, alev düzelticisi ile de donatılmış olmalıdır. 6. Numunenin hazırlanması 6.1 Çinkonun solüsyon haline getirilmesi, 10.1 veya 10.2 metotlarına bakınız. 6.2 Numune solüsyonunun hazırlanması 10.4 metodunun 6.2 maddesine bakınız. Numune solüsyonu % 10 (V/V) lantan tuzu içermesi gerekir. 7. Metot 7.1 Boş denemenin hazırlanması 10.4 metodunun 7.1 maddesine bakınız. Boş numune solüsyonu, 6.2’de kullanılan lantan tuzu solüsyonundan % 10 (v/v) içermesi gerekir. 7.2 Şahit deneme hazırlaması 10.4 metot, 7.2 maddeye bakınız. 0 ile 5 mg/ml çinko arasındaki en uygun dozaj aralığı için, 100 ml dereceli bir sıra şişelere, 0, 0,5, 1, 2, 3, 4 ve 5 ml çalışma solüsyonundan (4.4.2) koyunuz. Gerekli olursa, numune solüsyonuna mümkün olduğunca yakın konsantrasyona sahip olması için hidroklorik asit katınız. Her şişeye 10 ml 6.2’de kullanılan lantan tuzu solüsyonu ekleyiniz. 100 ml’ye dek 0,5 M hidroklorik asit (4.2) ile tamamlayınız. Karıştırınız. Bu solüsyonlar 0, 0,5 , 1, 2, 3, 4 ve 5 mg/ml çinko içerir. 7.3 Ölçümler 10.4 metodunun 7.3 maddesine bakınız. 213,8 nm dalga uzunluğunda ölçüm yapmak için spektrofotometreyi (5) hazırlayınız. 8. Sonuçların ifade edilmesi 10.4 metot, 8 maddeye bakınız. Gübredeki çinko yüzdesi eşittir : Zn % = [(Xs - Xb) x V x D] / (M x 104) Eğer kullanılan metot (10.3.) ise : Zn % = [(Xs - Xb) x V x 2D] / (M x 104) Ya da Zn ; gübrede yüzde olarak ifade edilen çinko miktarı Xs ; mg/ml olarak ifade edilen deneme solüsyonun (6.2) konsantrasyonu Xb ; mg/ml olarak ifade edilen boş deneme solüsyonu (7.1) konsantrasyonu V ; ml olarak ifade edilen ve 10.1 ya da 10.2 yöntemi ile elde edilen numune hacmi D ; 6.2 ile gerçekleştirilen sulandırma işlemine denk gelen faktördür. M ; gram olarak ifade edilen 9.1 ya da 9.2 yöntemi ile elde edilen numune kütlesi D ; sulandırma faktörü hesabı Eğer (a1), (a2), (a3).............. (ai) ve (a) ard arda gelen birer parça ise ve (V1), (V2), (V3), .......... (Vi) ve (100) söz konusu sulandırmalara uyan hacimler ise, D sulandırma faktörü eşittir : D = (V1/a1) x (V2/a2) x (V3/a3)x.x.x.x.x(Vi/ai) x (100/a) METOT 11 ŞELATLAMA MADDELERİ Metot 11.1- Şelatlı Mikro Bitki Besin Maddesi Muhtevasının ve Mikro Bitki Besin Maddelerinin Şelatlı Kısımlarının Tayini EN 13366:Gübreler-Şelatlı Mikro Bitki Besin Maddesi Muhtevasının ve Mikro Bitki Besin Maddelerinin Şelatlı Kısımlarının Katyon Değişim Reçinesi Muamelesiyle Tayini Bu metot ring-test’e tabii tutulmuştur. METOT 11.2 EDTA, HEDTA VE DTPA TAYİNİ EN 13368-1:Gübreler-Gübrelerdeki şelatlama maddelerinin iyon kromatografi yöntemi ile tayini Bölüm 1: EDTA, HEDTA ve DTPA Bu metot ring-test’e tabii tutulmuştur METOT 11.3 o,o EDDHA VE O,O EDDHMA ve HBED İLE ŞELATLANMIŞ DEMİR’İN TAYİNİ EN 13368-2: 2007 Gübeler- Gübrelerdeki şelatlama maddelerinin kromatografi yöntemi ile tayini – Bölüm 2: o,o EDDHA ve o,o EDDHA, o,o EDDHMA ve HBED ile şelatlanmış Demir(Fe)’in çift iyon - kromatografi ile tayini Bu metot ring-test’e tabii tutulmuştur. METOT 11.4 EDDHSA İLE ŞELATLANMIŞ DEMİR’İN TAYİNİ EN 15451: Gübeler- şelatlama maddelerinin tayini – EDDHSA ile şelatlanmış Demir(Fe)’in çift iyon -kromatografi ile tayini Bu metot ring-test’e tabii tutulmuştur. METOT 11.5 o,p EDDHA İLE ŞELATLANMIŞ DEMİR’İN TAYİNİ. EN 15452:Gübreler-Şelatlama maddelerinin tayini-o,p EDDHA ile şelatlı Demir’in Ters Fazlı HPLC ile Tayini Bu Metot ring-test’e tabii tutulmuştur. METOT 11.6 IDHA HESAPLANMASI EN 15950: Yüksek performanslı likid kromatografi (HPLC) ile N-(1,2-dikarboksietil)-D,L-aspartik asit(İminodisuksinik asit,IDHA)’nın Hesaplanması. Bu metot ring-test’e tabii tutulmuştur.
METOT 11.7 LİGNOSÜLFANATLAR’IN HESAPLANMASI EN 16109: Gübrelerdeki komplekslenmiş Mikro Bitki Besin Maddesi Anyonlarının Hesaplanması-Lignosülfanatların belirlemesi. Bu metot ring-test’e tabii tutulmuştur. METOT 11.8 MİKRO BİTKİ BESİN MADDELERİNİN KOMPLEKSLENMİŞ FRAKSİYONLARININ VE MİKRO BİTKİ BESİN MADDELERİNİN KOMPLEKSLİ MUHTEVALARININ HESAPLANMASI. EN 15962: Mikro Bitki Besin Maddelerinin Komplekslenmiş Fraksiyonlarının ve Mikro Bitki Besin Maddelerinin Kompleksli Muhtevalarının Hesaplanması. Bu metot ring-test’e tabii tutulmuştur. METOT 12 NİTRİFİKASYON VE ÜREAZ İNHİBİTÖRLERİ METOT 12.1 DİSİYANAMİD TAYİNİ EN 15360: Gübeler- Diciyanamid tayini – Yüksek performanslı likid kromatografi (HPLC) Metotu kullanarak Bu metot ring-test’e tabii tutulmuştur. METOT 12.2 NBPT TAYİNİ EN 15688: Gübeler- Üreaz inhibitör N-(n-bütil) tiyofosforik triamid (NBPT)’nin Yüksek performanslı likid kromatografi (HPLC) kullanarak tayini Bu metot ring-test’e tabii tutulmuştur.
METOT 12.3 3 METİLPİRAZOL’UN HESAPLANMASI EN 15905: Yüksek performanslı likid kromatografi (HPLC) ile 3 Metilpirazol’un Hesaplanması Bu metot ring-test’e tabii tutulmuştur. METOT 12.4 TRİAZOL’UN HESAPLANMASI EN 16024: Ürede ve Üre İçeren Gübrelerde 1H,1,2,4- Triazol’un Hesaplanması -Yüksek performanslı likid kromatografi (HPLC) Metodunu Kullanarak. Bu metot ring-test’e tabii tutulmuştur. METOT 12.5 2-NPT’NİN HESAPLANMASI EN 16075: Ürede ve Üre İçeren Gübrelerde N-(2-nitrofenil)fosforik triamid (2-NPT)’in Hesaplanması -Yüksek performanslı likid kromatografi (HPLC) Metodunu Kullanarak. Bu metot ring-test’e tabii tutulmuştur. METOT 13 AĞIR METALLER METOT 13.1 KADMİYUM MUHTEVASININ TAYİNİ EN 14888: Gübreler ve kireçleme maddeleri- Kadmiyum muhtevasının tayini Bu metot ring-test’e tabii tutulmuştur. METOT 14 KARBONDİOKSİT METOT 14.1 KARBONDİOKSİTİN TAYİNİ- BÖLÜM 1: KATI GÜBRELER İÇİN METOT EN 14397-1:Gübreler ve kireçli materyaller. Karbondioksitin tayini. Bölüm 1: Katı gübreler için metot. Bu metot ring-test’e tabii tutulmuştur.
(Ek:RG-9/8/2015-29440) METOT 15 KİREÇLEME MATERYALLERİ METOT 15.1 KİREÇLEME MATERYALLERİNİN KURU VE ISLAK ELEME İLE BÜYÜKLÜK DAĞILIMLARININ BELİRLENMESİ EN 12948:Kireçleme materyalleri- Kireçleme materyallerinin kuru ve ıslak eleme ile büyüklük dağılımlarının belirlenmesi Bu metot ring-test’e tabii tutulmuştur.
METOT 15.2 KARBONATLI VE SİLİKATLI KİREÇLEME MATERYALLERİNİN REAKTİVİTESİNİN HİDROKLORİK ASİT İLE BELİRLENMESİ EN 13971: Karbonatlı ve silikatlı kireçleme materyalleri– Reaktivitenin belirlenmesi-Hidroklorik asitli potensiyometrik metot. Bu metot ring-test’e tabii tutulmuştur. METOT 15.3 SİTRİK ASİTLİ OTOMATİK TİTRASYON METODU İLE REAKTİVİTENİN BELİRLENMESİ EN 16357: Karbonatlı kireçleme materyalleri – Reaktivitenin belirlenmesi-Sitrik asitli otomatik titrasyon metodu. Bu metot ring-test’e tabii tutulmuştur. METOT 15.4 KİREÇLEME MATERYALLERİNDEKİ NÖTRALLEŞTİRME DEĞERİNİN BELİRLENMESİ EN 12945:Kireçleme materyalleri– Nötralleştirme değerinin belirlenmesi- TİTRİMETRİK METOT. Bu metot ring-test’e tabii tutulmuştur.
METOT 15.5 KİREÇLEME MATERYALLERİNDEKİ KALSİYUMUN OKSALAT METODU İLE BELİRLENMESİ EN 13475:Kireçleme materyalleri– Kalsiyum muhtevasının belirlenmesi- Oksalat metodu. Bu metot ring-test’e tabii tutulmuştur. METOT 15.6 KİREÇLEME MATERYALLERİNDEKİ KALSİYUM VE MAGNEZYUMUN KOMPLEKSOMETRİ METODU İLE BELİRLENMESİ EN 12946:Kireçleme materyalleri– Kalsiyum ve magnezyum muhtevasının belirlenmesi- Kompleksometrik metot. Bu metot ring-test’e tabii tutulmuştur.
METOT 15.7 KİREÇLEME MATERYALLERİNDEKİ MAGNEZYUMUN ATOMİK ABSORBSİYON SPEKTROMETRİK METODU İLE BELİRLENMESİ EN 12947:Kireçleme materyalleri–Magnezyum muhtevasının belirlenmesi- Atomik absorbsiyon spektrometrik metot. Bu metot ring-test’e tabii tutulmuştur. METOT 15.8 NEM MİKTARININ BELİRLENMESİ EN 12048: Katı gübreler ve kireçleme materyalleri -Nem miktarının belirlenmesi-Gravimetrik metot 105°C ±2°C’de kurutarak Bu metot ring-test’e tabii tutulmuştur. METOT 15.9 GRANÜLLERİN DAĞILIMININ BELİRLENMESİ EN 15704:Kireçleme materyalleri-Suyun etkisi altında granül kalsiyum ve kalsiyum/magnezyum karbonatların dağılımının belirlenmesi. Bu metot ring-test’e tabii tutulmuştur. METOT 15.10 TOPRAK İNKÜBASYONU İLE ÜRÜN ETKİSİNİN BELİRLENMESİ EN 14984:Kireçleme materyalleri-Toprak pH’sı üzerine ürünün etkisinin belirlenmesi-Toprak inkübasyon metodu. Bu metot ring-test’e tabii tutulmuştur.
|
Ek- 3: Gübre Denetçi Kimlik Kartı
T.C ……………………. BAKANLIĞI ………………………… MÜDÜRLÜĞÜ GÜBRE DENETÇİSİ KİMLİK KARTI
KARTIN ÖN YÜZÜ BİLGİLERİ
T.C.KİMLİK NO : ADI : SOYADI : UNVANI : SİCİL NO :
KARTIN ARKA YÜZÜ BİLGİLERİ
BABA ADI : ANA ADI : İL : İLÇE : CİLT NO : AİLE SIRA NO: SIRA NO : DOĞUM YERİ/YIL : NÜFUS CÜZDANI SERİ NO : KARTIN VERİLİŞ TARİHİ : KART NO: Bu kart Gübre Denetçisi Tanıtım Kartı’dır. Başka amaçla kullanılamaz. Ad Soyadı Görev Unvanı İmza.
Ek-4: Üretim Yeri Durum Tespit Raporu
Üretim Yeri Durum Tespit Raporu
Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelik ekinde yer alan ürün için Üretim Lisansı almak isteyen, yukarıda bilgileri bulunan kuruluşun üretim yeri adresine ……./……/…….. tarihinde gidilerek yerinde yapılan inceleme ve kontrol sonrasında yukarıda yer alan alet ve ekipmanlar tespit edilmiştir. Kontrol Edenler Tasdik Eden Denetçi Denetçi Şube Müdürü Adı Soyadı Adı Soyadı Adı Soyadı İmza imza imza
Ek- 5: Lisans Belgesi Müracaat Formu Lisans Belgesi Müracaat Formu
Tarih: ....../....../20... Kurum/KuruluşTemsilcisinin Adı ve Soyadı İmza ve Kaşesi
Ek – 6: Tescil Belgesi Müracaat Formu Tescil Belgesi Müracaat Formu
Tarih: ....../....../20... Kurum/Kuruluş Temsilcisinin Adı ve Soyadı İmza ve Kaşesi
Ek – 7: İthalat Uygunluk Yazısı Başvuru Dilekçe Örneği
T.C. TARIM ve ORMAN BAKANLIĞI Bitkisel Üretim Genel Müdürlüğüne/……İl Tarım ve Orman Müdürlüğüne
Aşağıda belirtilen ürün/ürünleri tarımsal / sanayi amaçlı kullanmak üzere ithal etmek istiyorum. Gereğini arz ederim.
(Tarih) (Yetkili Adı, Soyadı, İmzası, Unvanı ve Firma Kaşesi)
Ekler: 1-Tarımsal amaçlı ithalatlarda Ürüne ait analiz raporunun/sertifikasının aslı veya firmaca onaylı sureti (6 ay) 2-Faturanın/Proforma faturanın aslı veya ithalatçı firma tarafından onaylanmış sureti ve gerektiğinde Türkçe tercümesi 3- İlgili döner sermaye hesabına yatırılan ücret dekontunun aslı
Ek-8: Lisans Belgesi Örneği
Bu Belge ….. tarihli ve …. sayılı Resmî Gazete’de yayımlanan ……. Yönetmeliği gereği düzenlenmiştir.(…/…/20..)
İmza Adı SOYADI
Ek-9: Tescil Belgesi Örneği
Bu Belge …… tarihli ve ………..sayılı Resmî Gazete’de yayımlanan ……. Yönetmeliği gereği düzenlenmiştir. (…/…/20..)
İmza Adı SOYADI
Ek-10: İthalat Uygunluk Belgesi
T.C. TARIM ve ORMAN BAKANLIĞI Bitkisel Üretim Genel Müdürlüğü/……İl Tarım ve Orman Müdürlüğü
Sayı : Konu : Belge No:
İLGİLİ FİRMAYA İlgili Firma Adresi
İlgi :….. tarih ve ….sayılı başvurunuz.
Ticaret Bakanlığının ……….. Tebliğ kapsamında yer alan, aşağıda özellikleri ve miktarı yazılı ürünün/ürünlerin tarımsal amaçlı kullanılmak üzere ithali uygun görülmüştür. Bu belge …./…/…. tarihine kadar geçerlidir
Bilgilerinizi rica ederim.
Ad Soyad Ünvan İmza
____________________________________________________________________________ AÇIKLAMALAR 1- İthalatın kısmen ya da tamamen gerçekleşmesini müteakip on beş iş günü içinde gümrük beyannamesinin ilgili gümrük idaresince onaylanmış bir sureti ve her halükârda uygunluk yazısının geçerlilik süresinin bitimini müteakip on beş iş günü içinde uygunluk yazısının aslı, ithalatı gerçekleştiren firmalarca Bitkisel Üretim Genel Müdürlüğüne verilir. 2- Gerçekleşen ithalat miktarı ve parasal tutarı, uygunluk yazısının ön veya arka yüzüne Gümrük İdaresince yazılarak onaylanacaktır. 3- Tarımsal amaçlı ithalatlarda TSE yetkililerince üründen numune alınarak Gübrelerin Piyasa Gözetimi ve Denetimi Yönetmeliğinin ekinde yer alan analiz metotlarına göre analize tabi tutulup, Tarımda Kullanılan Kimyevi Gübrelere Dair Yönetmelikte yer alan normlara uygunluğu sağlandıktan sonra ürünün girişine izin verilir. 4- Firma Bakanlığımızın …… ve …… sayılı Resmî Gazete ’de yayımlanan ….. Tebliğ doğrultusunda Bakanlığımıza bilgi ve belge akışını sağlamak zorundadır.
Ek-11: Numune Alma Tutanağı
NUMUNE ALMA TUTANAĞI NO: Denetim Şekli : Piyasa ( ) Şikâyet ( )
Numunenin Kodu : (İşyerine verilecek nüshada doldurulmayacak)
Denetlenen Kuruluşun Adı : (Kodlu nüshada doldurulmayacak)
Denetlenen Kuruluşun Adresi : (Kodlu nüshada doldurulmayacak)
Üretici /İthalatçı/ Adı : (Kodlu nüshada doldurulmayacak)
Üretici/İthalatçı/Üretici-İthalatçı Lisans No : (Kodlu nüshada doldurulmayacak)
Ürünün Ticari Adı : (Kodlu nüshada doldurulmayacak)
Ürünün Tip ismi : (Kodlu nüshada doldurulmayacak)
Ürünün Tescil numarası : (Kodlu nüshada doldurulmayacak)
Ürünün Parti/Seri/Şarj/Lot Veya barkod nosu : Kodlu nüshada doldurulmayacak) Ürünün Ambalaj büyüklüğü :………………………………………………………..
Numune Alma tarihi :………………………………………………………..
Ürünün İçerik ve diğer parametreler :……………………………………………………….. :……………………………………………………….. :……………………………………………………….. ........sayılı .............................................................................................................Kanun ve ........... tarihli ve .........sayılı Resmî Gazete’de yayımlanan ................................................................Yönetmeliğine istinaden, yukarıda yazılı bilgileri içeren gübrenin, tetkik edilerek açılmamış olduğu anlaşılan orijinal ambalajından, imalatçının üretim yeri/İthalatçının/ paketleme/ deposu/Dağıtıcının satış yerinden veya deposundan /şikayete konu ürünün bulunduğu yerden usulüne göre heyetimizce alınan 3 (üç) adet gübre numunesi/ambalaj numunesi, numune torbalarına konularak ağızları mühürlenmiştir/bağlanmıştır. Kodsuz ve tüm bilgiler yazılarak düzenlenen bir tutanak, şahit numune ile birlikte İmalatçı/İthalatçı/Dağıtıcıya teslim edilmiştir.
NUMUNE ALAN YETKİLİLERİN ÜRT/İTH/DAĞITICI Adı Soyadı Adı Soyadı Adı Soyadı Belge No: Belge No: Kaşe/İmza İmza İmza
Ek-12: İşyeri Denetim Tutanağı
Ek-13: Gübre Dağıtıcılık Belgesi
Ek-14: Numune Alındı Etiketi Örneği
BU AMBALAJDAN ………………………………………….. YÖNETMELİĞİ GEREĞİ DENETİM AMACIYLA NUMUNE ALINMIŞTIR.
Ek-15: Denetim Programı Listesi
Ek-17: İdari Para Cezası Kararı
Ek-18: Analiz Ücreti Tahsil Fişi
Ek-19: Yediemin Tutanağı
YEDİEMİN TUTANAĞI
İşbu tutanak 1 (bir) sayfa 2 (İki) nüsha olarak düzenlenerek imza altına alınmıştır. …./…/….
…….. İl Tarım Müdürlüğü
Adı ve Soyadı Adı ve Soyadı İşyeri yetkilisi Adı ve Soyadı İmza İmza İmza Kaşe
|